ترغب بنشر مسار تعليمي؟ اضغط هنا

Derivatives of the Stochastic Growth Rate

315   0   0.0 ( 0 )
 نشر من قبل David Steinsaltz
 تاريخ النشر 2010
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider stochastic matrix models for population driven by random environments which form a Markov chain. The top Lyapunov exponent $a$, which describes the long-term growth rate, depends smoothly on the demographic parameters (represented as matrix entries) and on the parameters that define the stochastic matrix of the driving Markov chain. The derivatives of $a$ -- the stochastic elasticities -- with respect to changes in the demographic parameters were derived by cite{tuljapurkar1990pdv}. These results are here extended to a formula for the derivatives with respect to changes in the Markov chain driving the environments. We supplement these formulas with rigorous bounds on computational estimation errors, and with rigorous derivations of both the new and the old formulas.



قيم البحث

اقرأ أيضاً

255 - V.I. Yukalov , E.P. Yukalova , 2017
In a standard bifurcation of a dynamical system, the stationary points (or more generally attractors) change qualitatively when varying a control parameter. Here we describe a novel unusual effect, when the change of a parameter, e.g. a growth rate, does not influence the stationary states, but nevertheless leads to a qualitative change of dynamics. For instance, such a dynamic transition can be between the convergence to a stationary state and a strong increase without stationary states, or between the convergence to one stationary state and that to a different state. This effect is illustrated for a dynamical system describing two symbiotic populations, one of which exhibits a growth rate larger than the other one. We show that, although the stationary states of the dynamical system do not depend on the growth rates, the latter influence the boundary of the basins of attraction. This change of the basins of attraction explains this unusual effect of the quantitative change of dynamics by growth rate variation.
The growth of a population divided among spatial sites, with migration between the sites, is sometimes modelled by a product of random matrices, with each diagonal elements representing the growth rate in a given time period, and off-diagonal element s the migration rate. If the sites are reinterpreted as age classes, the same model may apply to a single population with age-dependent mortality and reproduction. We consider the case where the off-diagonal elements are small, representing a situation where there is little migration or, alternatively, where a deterministic life-history has been slightly disrupted, for example by introducing a rare delay in development. We examine the asymptotic behaviour of the long-term growth rate. We show that when the highest growth rate is attained at two different sites in the absence of migration (which is always the case when modelling a single age-structured population) the increase in stochastic growth rate due to a migration rate $epsilon$ is like $(log epsilon^{-1})^{-1}$ as $epsilondownarrow 0$, under fairly generic conditions. When there is a single site with the highest growth rate the behavior is more delicate, depending on the tails of the growth rates. For the case when the log growth rates have Gaussian-like tails we show that the behavior near zero is like a power of $epsilon$, and derive upper and lower bounds for the power in terms of the difference in the growth rates and the distance between the sites.
The growth of a population divided among spatial sites, with migration between the sites, is sometimes modelled by a product of random matrices, with each diagonal elements representing the growth rate in a given time period, and off-diagonal element s the migration rate. The randomness of the matrices then represents stochasticity of environmental conditions. We consider the case where the off-diagonal elements are small, representing a situation where migration has been introduced into an otherwise sessile meta-population. We examine the asymptotic behaviour of the long-term growth rate. When there is a single site with the highest growth rate, under the assumption of Gaussian log growth rates at the individual sites (or having Gaussian-like tails) we show that the behavior near zero is like a power of $epsilon$, and derive upper and lower bounds for the power in terms of the difference in the growth rates and the distance between the sites. In particular, when the difference in mean log growth rate between two sites is sufficiently small, or the variance of the difference between the sites sufficiently large, migration will always be favored by natural selection, in the sense that introducing a small amount of migration will increase the growth rate of the population relative to the zero-migration case.
When analysing in vitro data, growth kinetics of influenza strains are often compared by computing their growth rates, which are sometimes used as proxies for fitness. However, analogous to mechanistic epidemic models, the growth rate can be defined as a function of two parameters: the basic reproduction number (the average number of cells each infected cell infects) and the mean generation time (the average length of a replication cycle). Using a mechanistic model, previously published data from experiments in human lung cells, and newly generated data, we compared estimates of all three parameters for six influenza A strains. Using previously published data, we found that the two human-adapted strains (pre-2009 seasonal H1N1, and pandemic H1N1) had a lower basic reproduction number, shorter mean generation time and slower growth rate than the two avian-adapted strains (H5N1 and H7N9). These same differences were then observed in data from new experiments where two strains were engineered to have different internal proteins (pandemic H1N1 and H5N1), but the same surface proteins (PR8), confirming our initial findings and implying that differences between strains were driven by internal genes. Also, the model predicted that the human-adapted strains underwent more replication cycles than the avian-adapted strains by the time of peak viral load, potentially accumulating mutations more quickly. These results suggest that the in vitro reproduction number, generation time and growth rate differ between human-adapted and avian-adapted influenza strains, and thus could be used to assess host adaptation of internal proteins to inform pandemic risk assessment.
How cooperation emerges in human societies is still a puzzle. Evolutionary game theory has been the standard framework to address this issue. In most models, every individual plays with all others, and then reproduce and die according to what they ea rn. This amounts to assuming that selection takes place at a slow pace with respect to the interaction time scale. We show that, quite generally, if selection speeds up, the evolution outcome changes dramatically. Thus, in games such as Harmony, where cooperation is the only equilibrium and the only rational outcome, rapid selection leads to dominance of defectors. Similar non trivial phenomena arise in other binary games and even in more complicated settings such as the Ultimatum game. We conclude that the rate of selection is a key element to understand and model the emergence of cooperation, and one that has so far been overlooked.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا