ترغب بنشر مسار تعليمي؟ اضغط هنا

Generation of Alfven Waves by Magnetic Reconnection

124   0   0.0 ( 0 )
 نشر من قبل Hiromitsu Kigure
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, results of 2.5-dimensional magnetohydrodynamical simulations are reported for the magnetic reconnection of non-perfectly antiparallel magnetic fields. The magnetic field has a component perpendicular to the computational plane, that is, guide field. The angle theta between magnetic field lines in two half regions is a key parameter in our simulations whereas the initial distribution of the plasma is assumed to be simple; density and pressure are uniform except for the current sheet region. Alfven waves are generated at the reconnection point and propagate along the reconnected field line. The energy fluxes of the Alfven waves and magneto-acoustic waves (slow mode and fast mode) generated by the magnetic reconnection are measured. Each flux shows the similar time evolution independent of theta. The percentage of the energies (time integral of energy fluxes) carried by the Alfven waves and magneto-acoustic waves to the released magnetic energy are calculated. The Alfven waves carry 38.9%, 36.0%, and 29.5% of the released magnetic energy at the maximum (theta=80^circ) in the case of beta=0.1, 1, and 20 respectively, where beta is the plasma beta (the ratio of gas pressure to magnetic pressure). The magneto-acoustic waves carry 16.2% (theta=70^circ), 25.9% (theta=60^circ), and 75.0% (theta=180^circ) of the energy at the maximum. Implications of these results for solar coronal heating and acceleration of high-speed solar wind are discussed.


قيم البحث

اقرأ أيضاً

127 - L. C. Wang , L. J. Li , Z. W. Ma 2015
A new method for the determination of the Alfven wave energy generated during magnetic reconnection is introduced and used to analyze the results from two-dimensional MHD simulations. It is found that the regions with strong Alfven wave perturbations almost coincide with that where both magnetic-field lines and flow-stream lines are bent, suggesting that this method is reliable for identifying Alfven waves. The magnetic energy during magnetic reconnection is mainly transformed into the thermal energy. The conversion rate to Alfven wave energy from the magnetic energy is strongly correlated to the magnetic reconnection rate. The maximum conversion rate at the time with the peak reconnection rate is found to be only about 4% for the cases with the plasma beta=0.01,0.1, and 1.0.
We investigate physical scaling laws for magnetic energy dissipation in solar flares, in the framework of the Sweet-Parker model and the Petschek model. We find that the total dissipated magnetic energy $E_{diss}$ in a flare depends on the mean magne tic field component $B_f$ associated with the free energy $E_f$, the length scale $L$ of the magnetic area, the hydrostatic density scale height $lambda$ of the solar corona, the Alfven Mach number $M_A=v_1/v_A$ (the ratio of the inflow speed $v_1$ to the Alfvenic outflow speed $v_A$), and the flare duration $tau_f$, i.e., $E_{diss} = (1/4pi) B_f^2 L lambda v_A M_A tau_f$, where the Alfven speed depends on the nonpotential field strength $B_{np}$ and the mean electron density $n_e$ in the reconnection outflow. Using MDI/SDO and AIA/SDO observations and 3-D magnetic field solutions obtained with the vertical-current approximation nonlinear force-free field code (VCA-NLFFF) we measure all physical parameters necessary to test scaling laws, which represents a new method to measure Alfven Mach numbers $M_A$, the reconnection rate, and the total free energy dissipated in solar flares.
{This work aims to investigate the spectral structure of the parallel electric field generated by strong anisotropic and balanced Alfvenic turbulence in relation with the problem of electron acceleration from the thermal population in solar flare pla sma conditions.} {We consider anisotropic Alfvenic fluctuations in the presence of a strong background magnetic field. Exploiting this anisotropy, a set of reduced equations governing non-linear, two-fluid plasma dynamics is derived. The low-$beta$ limit of this model is used to follow the turbulent cascade of the energy resulting from the non-linear interaction between kinetic Alfven waves, from the large magnetohydrodynamics (MHD) scales with $k_{perp}rho_{s}ll 1$ down to the small kinetic scales with $k_{perp}rho_{s} gg 1$, $rho_{s}$ being the ion sound gyroradius.} {Scaling relations are obtained for the magnitude of the turbulent electromagnetic fluctuations, as a function of $k_{perp}$ and $k_{parallel}$, showing that the electric field develops a component parallel to the magnetic field at large MHD scales.} {The spectrum we derive for the parallel electric field fluctuations can be effectively used to model stochastic resonant acceleration and heating of electrons by Alfven waves in solar flare plasma conditions}
167 - N. Bian , E. Kontar 2010
Previous numerical studies have identified phase mixing of low-frequency Alfven waves as a mean of parallel electric field amplification and acceleration of electrons in a collisionless plasma. Theoretical explanations are given of how this produces an amplification of the parallel electric field, and as a consequence, also leads to enhanced collisionless damping of the wave by energy transfer to the electrons. Our results are based on the properties of the Alfven waves in a warm plasma which are obtained from drift-kinetic theory, in particular, the rate of their electron Landau damping. Phase mixing in a collisionless low-$beta$ plasma proceeds in a manner very similar to the visco-resistive case, except for the fact that electron Landau damping is the primary energy dissipation channel. The time and length scales involved are evaluated. We also focus on the evolution of the parallel electric field and calculate its maximum value in the course of its amplification.
Line-driven stellar winds from massive (OB) stars are subject to a strong line-deshadowing instability. Recently, spectropolarimetric surveys have collected ample evidence that a subset of Galactic massive stars hosts strong surface magnetic fields. We investigate here the propagation and stability of magneto-radiative waves in such a magnetised, line-driven wind. Our analytic, linear stability analysis includes line-scattering from the stellar radiation, and accounts for both radial and non-radial perturbations. We establish a bridging law for arbitrary perturbation wavelength after which we analyse separately the long- and short-wavelength limits. While long-wavelength radiative and magnetic waves are found to be completely decoupled, a key result is that short-wavelength, radially propagating Alfven waves couple to the scattered radiation field and are strongly damped due to the line-drag effect. This damping of magnetic waves in a scattering-line-driven flow could have important effects on regulating the non-linear wind dynamics, and so might also have strong influence on observational diagnostics of the wind structure and clumping of magnetic line-driven winds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا