ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiwavelength observations of 3C 454.3. III. Eighteen months of AGILE monitoring of the Crazy Diamond

115   0   0.0 ( 0 )
 نشر من قبل Stefano Vercellone
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on 18 months of multiwavelength observations of the blazar 3C 454.3 (Crazy Diamond) carried out in July 2007-January 2009. We show the results of the AGILE campaigns which took place on May-June 2008, July-August 2008, and October 2008-January 2009. During the May 2008-January 2009 period, the source average flux was highly variable, from an average gamma-ray flux F(E>100MeV) > 200E-8 ph/cm2/s in May-June 2008, to F(E>100MeV)~80E-8 ph/cm2/s in October 2008-January 2009. The average gamma-ray spectrum between 100 MeV and 1 GeV can be fit by a simple power law (Gamma_GRID ~ 2.0 to 2.2). Only 3-sigma upper limits can be derived in the 20-60 keV energy band with Super-AGILE. During July-August 2007 and May-June 2008, RXTE measured a flux of F(3-20 keV)= 8.4E-11 erg/cm2/s, and F(3-20 keV)=4.5E-11 erg/cm2/s, respectively and a constant photon index Gamma_PCA=1.65. Swift/XRT observations were carried out during all AGILE campaigns, obtaining a F(2-10 keV)=(0.9-7.5)E-11 erg/cm2/s and a photon index Gamma_XRT=1.33-2.04. BAT measured an average flux of ~5 mCrab. GASP-WEBT monitored 3C 454.3 during the whole 2007-2008 period from the radio to the optical. A correlation analysis between the optical and the gamma-ray fluxes shows a time lag of tau=-0.4 days. An analysis of 15 GHz and 43 GHz VLBI core radio flux observations shows an increasing trend of the core radio flux, anti- correlated with the higher frequency data. The modeling SEDs, and the behavior of the long-term light curves in different energy bands, allow us to compare the jet properties during different emission states, and to study the geometrical properties of the jet on a time-span longer than one year.



قيم البحث

اقرأ أيضاً

[Abridged] We report on a multiwavelength observation of the blazar 3C 454.3 (which we dubbed crazy diamond) carried out on November 2007 by means of the astrophysical satellites AGILE, INTEGRAL, Swift, the WEBT Consortium, and the optical-NIR telesc ope REM. 3C 454.3 is detected at a $sim 19-sigma$ level during the 3-week observing period, with an average flux above 100 MeV of $F_{rm E>100MeV} = (170 pm 13) times 10^{-8}$ phcmsec. The gamma-ray spectrum can be fit with a single power-law with photon index $Gamma_{rm GRID} = 1.73 pm 0.16$ between 100 MeV and 1 GeV. We detect significant day-by-day variability of the gamma-ray emission during our observations, and we can exclude that the fluxes are constant at the 99.6% ($sim 2.9 sigma$) level. The source was detected typically around 40 degrees off-axis, and it was substantially off--axis in the field of view of the AGILE hard X-ray imager. However, a 5-day long ToO observation by INTEGRAL detected 3C 454.3 at an average flux of about $F_{rm 20-200 keV} = 1.49 times 10^{-3}$ phcmsec with an average photon index of $Gamma_{rm IBIS} = 1.75 pm 0.24$ between 20--200 keV. Swift also detected 3C 454.3 with a flux in the 0.3--10 keV energy band in the range $(1.23-1.40) times 10^{-2}$ phcmsec{} and a photon index in the range $Gamma_{rm XRT} = 1.56-1.73$. In the optical band, both WEBT and REM show an extremely variable behavior in the $R$ band. A correlation analysis based on the entire data set is consistent with no time-lags between the gamma-ray and the optical flux variations. Our simultaneous multifrequency observations strongly indicate that the dominant emission mechanism between 30 MeV and 30 GeV is dominated by inverse Compton scattering of relativistic electrons in the jet on the external photons from the broad line region.
182 - S. Vercellone 2009
During the period July 2007 - January 2009, the AGILE satellite, together with several other space- and ground-based observatories monitored the activity of the flat-spectrum radio quasar 3C 454.3, yielding the longest multiwavelength coverage of thi s gamma-ray quasar so far. The source underwent an unprecedented period of very high activity above 100 MeV, a few times reaching gamma-ray flux levels on a day time scale higher than F=400 x 10^-8 ph cm^-2 s^-1, in conjunction with an extremely variable behavior in the optical R-band, even of the order of several tenth of magnitude in few hours, as shown by the GASP-WEBT light curves. We present the results of this long term multiwavelength monitoring campaign, with particular emphasis on the study of possible lags between the different wavebands, and the results of the modeling of simultaneous spectral energy distributions at different levels of activity.
We report on the second AGILE multiwavelength campaign of the blazar 3C 454.3 during the first half of December 2007. This campaign involved AGILE, Spitzer, Swift,Suzaku,the WEBT consortium,the REM and MITSuME telescopes,offering a broad band coverag e that allowed for a simultaneous sampling of the synchrotron and inverse Compton (IC) emissions.The 2-week AGILE monitoring was accompanied by radio to optical monitoring by WEBT and REM and by sparse observations in mid-Infrared and soft/hard X-ray energy bands performed by means of Target of Opportunity observations by Spitzer, Swift and Suzaku, respectively.The source was detected with an average flux of~250x10^{-8}ph cm^-2s^-1 above 100 MeV,typical of its flaring states.The simultaneous optical and gamma-ray monitoring allowed us to study the time-lag associated with the variability in the two energy bands, resulting in a possible ~1-day delay of the gamma-ray emission with respect to the optical one. From the simultaneous optical and gamma-ray fast flare detected on December 12, we can constrain the delay between the gamma-ray and optical emissions within 12 hours. Moreover, we obtain three Spectral Energy Distributions (SEDs) with simultaneous data for 2007 December 5, 13, 15, characterized by the widest multifrequency coverage. We found that a model with an external Compton on seed photons by a standard disk and reprocessed by the Broad Line Regions does not describe in a satisfactory way the SEDs of 2007 December 5, 13 and 15. An additional contribution, possibly from the hot corona with T=10^6 K surrounding the jet, is required to account simultaneously for the softness of the synchrotron and the hardness of the inverse Compton emissions during those epochs.
314 - E. Benitez 2009
We performed an optical spectroscopic monitoring of the blazar 3C 454.3 from September 2003 to July 2008. Sixteen optical spectra were obtained during different runs, which constitute the first spectroscopic monitoring done in the rest-frame UV regio n (z=0.859). An overall flux variation of the MgII (2800 A) by a factor ~ 3 was observed, while the corresponding UV continuum (F_cont at 3000 A) changed by a factor ~ 14. The MgII emission lines respond proportionally to the continuum variations when the source is in a low-activity state. In contrast, near the optical outbursts detected in 2005 and 2007, the MgII emission lines showed little response to the continuum flux variations. During the monitored period the UV FeII flux changed by a factor ~ 6 and correlated with F_cont (r = 0.92). A negative correlation between EW(Mg II) and F_cont was found, i.e. the so-called Intrinsic Baldwin Effect.
We present multiwavelength data of the blazar 3C 454.3 obtained during an extremely bright outburst from November 2010 through January 2011. These include flux density measurements with the Herschel Space Observatory at five submillimeter-wave and fa r-infrared bands, the Fermi Large Area Telescope at gamma-ray energies, Swift at X-ray, ultraviolet (UV), and optical frequencies, and the Submillimeter Array at 1.3 mm. From this dataset, we form a series of 52 spectral energy distributions (SEDs) spanning nearly two months that are unprecedented in time coverage and breadth of frequency. Discrete correlation anlaysis of the millimeter, far-infrared, and gamma-ray light curves show that the variations were essentially simultaneous, indicative of co-spatiality of the emission, at these wavebands. In contrast, differences in short-term fluctuations at various wavelengths imply the presence of inhomegeneities in physical conditions across the source. We locate the site of the outburst in the parsec-scale core, whose flux density as measured on 7 mm Very Long Baseline Array images increased by 70 percent during the first five weeks of the outburst. Based on these considerations and guided by the SEDs, we propose a model in which turbulent plasma crosses a conical standing shock in the parsec-scale region of the jet. Here, the high-energy emission in the model is produced by inverse Compton scattering of seed photons supplied by either nonthermal radiation from a Mach disk, thermal emission from hot dust, or (for X-rays) synchrotron radiation from plasma that crosses the standing shock. For the two dates on which we fitted the model SED to the data, the model corresponds very well to the observations at all bands except at X-ray energies, where the spectrum is flatter than observed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا