ﻻ يوجد ملخص باللغة العربية
A number of papers claim that a Log Periodic Power Law (LPPL) fitted to financial market bubbles that precede large market falls or crashes, contain parameters that are confined within certain ranges. The mechanism that has been claimed as underlying the LPPL, is based on influence percolation and a martingale condition. This paper examines these claims and the robustness of the LPPL for capturing large falls in the Hang Seng stock market index, over a 30-year period, including the current global downturn. We identify 11 crashes on the Hang Seng market over the period 1970 to 2008. The fitted LPPLs have parameter values within the ranges specified post hoc by Johansen and Sornette (2001) for only seven of these crashes. Interestingly, the LPPL fit could have predicted the substantial fall in the Hang Seng index during the recent global downturn. We also find that influence percolation combined with a martingale condition holds for only half of the pre-crash bubbles previously reported. Overall, the mechanism posited as underlying the LPPL does not do so, and the data used to support the fit of the LPPL to bubbles does so only partially.
A key problem in financial mathematics is the forecasting of financial crashes: if we perturb asset prices, will financial institutions fail on a massive scale? This was recently shown to be a computationally intractable (NP-hard) problem. Financial
We show that log-periodic power-law (LPPL) functions are intrinsically very hard to fit to time series. This comes from their sloppiness, the squared residuals depending very much on some combinations of parameters and very little on other ones. The
We propose that large stock market crashes are analogous to critical points studied in statistical physics with log-periodic correction to scaling. We extend our previous renormalization group model of stock market prices prior to and after crashes [
During any unique crisis, panic sell-off leads to a massive stock market crash that may continue for more than a day, termed as mainshock. The effect of a mainshock in the form of aftershocks can be felt throughout the recovery phase of stock price.
We investigate the probability distribution of order imbalance calculated from the order flow data of 43 Chinese stocks traded on the Shenzhen Stock Exchange. Two definitions of order imbalance are considered based on the order number and the order s