ترغب بنشر مسار تعليمي؟ اضغط هنا

Finite temperature crossovers near quantum tricritical points in metals

241   0   0.0 ( 0 )
 نشر من قبل Pawel Jakubczyk
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a renormalization group treatment of quantum tricriticality in metals. Applying a set of flow equations derived within the functional renormalization group framework we evaluate the correlation length in the quantum critical region of the phase diagram, extending into finite temperatures above the quantum critical or tricritical point. We calculate the finite temperature phase boundaries and analyze the crossover behavior when the system is tuned between quantum criticality and quantum tricriticality.



قيم البحث

اقرأ أيضاً

231 - J. Bauer , P. Jakubczyk , 2011
We compute the transition temperature $T_c$ and the Ginzburg temperature $T_{rm G}$ above $T_c$ near a quantum critical point at the boundary of an ordered phase with a broken discrete symmetry in a two-dimensional metallic electron system. Our calcu lation is based on a renormalization group analysis of the Hertz action with a scalar order parameter. We provide analytic expressions for $T_c$ and $T_{rm G}$ as a function of the non-thermal control parameter for the quantum phase transition, including logarithmic corrections. The Ginzburg regime between $T_c$ and $T_{rm G}$ occupies a sizable part of the phase diagram.
Quantum critical points (QCPs) emerge when a 2nd order phase transition is suppressed to zero temperature. In metals the quantum fluctuations at such a QCP can give rise to new phases including unconventional superconductivity. Whereas antiferromagne tic QCPs have been studied in considerable detail ferromagnetic (FM) QCPs are much harder to access. In almost all metals FM QCPs are avoided through either a change to 1st order transitions or through an intervening spin-density-wave (SDW) phase. Here, we study the prototype of the second case, NbFe$_2$. We demonstrate that the phase diagram can be modelled using a two-order-parameter theory in which the putative FM QCP is buried within a SDW phase. We establish the presence of quantum tricritical points (QTCPs) at which both the uniform and finite $q$ susceptibility diverge. The universal nature of our model suggests that such QTCPs arise naturally from the interplay between SDW and FM order and exist generally near a buried FM QCP of this type. Our results promote NbFe$_2$ as the first example of a QTCP, which has been proposed as a key concept in a range of narrow-band metals, including the prominent heavy-fermion compound YbRh$_2$Si$_2$.
The last decade has witnessed an impressive progress in the theoretical understanding of transport properties of clean, one-dimensional quantum lattice systems. Many physically relevant models in one dimension are Bethe-ansatz integrable, including t he anisotropic spin-1/2 Heisenberg (also called spin-1/2 XXZ chain) and the Fermi-Hubbard model. Nevertheless, practical computations of, for instance, correlation functions and transport coefficients pose hard problems from both the conceptual and technical point of view. Only due to recent progress in the theory of integrable systems on the one hand and due to the development of numerical methods on the other hand has it become possible to compute their finite temperature and nonequilibrium transport properties quantitatively. Most importantly, due to the discovery of a novel class of quasilocal conserved quantities, there is now a qualitative understanding of the origin of ballistic finite-temperature transport, and even diffusive or super-diffusive subleading corrections, in integrable lattice models. We shall review the current understanding of transport in one-dimensional lattice models, in particular, in the paradigmatic example of the spin-1/2 XXZ and Fermi-Hubbard models, and we elaborate on state-of-the-art theoretical methods, including both analytical and computational approaches. Among other novel techniques, we discuss matrix-product-states based simulation methods, dynamical typicality, and, in particular, generalized hydrodynamics. We will discuss the close and fruitful connection between theoretical models and recent experiments, with examples from both the realm of quantum magnets and ultracold quantum gases in optical lattices.
We study the effects of finite temperature on normal state properties of a metal near a quantum critical point to an antiferromagnetic or Ising-nematic state. At $T = 0$ bosonic and fermionic self-energies are traditionally computed within Eliashberg theory and obey scaling relations with characteristic power-laws. Quantum Monte Carlo (QMC) simulations have shown strong systematic deviations from these predictions, casting doubt on the validity of the theoretical analysis. We extend Eliashberg theory to finite $T$ and argue that for the $T$ range accessible in the QMC simulations, the scaling forms for both fermionic and bosonic self energies are quite different from those at $T = 0$. We compare finite $T$ results with QMC data and find good agreement for both systems. This, we argue, resolves the key apparent contradiction between the theory and the QMC simulations.
We extend the Hertz-Millis theory of quantum phase transitions in itinerant electron systems to phases with broken discrete symmetry. Using a set of coupled flow equations derived within the functional renormalization group framework, we compute the second order phase transition line T_c(delta), with delta a non-thermal control parameter, near a quantum critical point. We analyze the interplay and relative importance of quantum and classical fluctuations at different energy scales, and we compare the Ginzburg temperature T_G to the transition temperature T_c, the latter being associated with a non-Gaussian fixed-point.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا