ﻻ يوجد ملخص باللغة العربية
A tool for representation of the one-dimensional astrometric signal of Gaia is described and investigated in terms of fit discrepancy and astrometric performance with respect to number of parameters required. The proposed basis function is based on the aberration free response of the ideal telescope and its derivatives, weighted by the source spectral distribution. The influence of relative position of the detector pixel array with respect to the optical image is analysed, as well as the variation induced by the source spectral emission. The number of parameters required for micro-arcsec level consistency of the reconstructed function with the detected signal is found to be 11. Some considerations are devoted to the issue of calibration of the instrument response representation, taking into account the relevant aspects of source spectrum and focal plane sampling. Additional investigations and other applications are also suggested.
A general purpose fitting model for one-dimensional astrometric signals is developed, building on a maximum likelihood framework, and its performance is evaluated by simulation over a set of realistic image instances. The fit quality is analysed as a
We discuss the prospects of high precision pointing of our transmitter to habitable planets around Galactic main sequence stars. For an efficient signal delivery, the future sky positions of the host stars should be appropriately extrapolated with ac
The Gaia mission is delivering exquisite astrometric data for 1.47 billion sources, which are revolutionizing many fields in astronomy. For a small fraction of these sources the astrometric solutions are poor, and the reported values and uncertaintie
The standard errors of the end-of-mission Gaia astrometry have been re-assessed after conclusion of the in-orbit commissioning phase of the mission. An analytical relation is provided for the parallax standard error as function of Gaia G magnitude (a
Gaia Data Release 2 (Gaia DR2) contains results for 1693 million sources in the magnitude range 3 to 21 based on observations collected by the European Space Agency Gaia satellite during the first 22 months of its operational phase. We describe the i