ترغب بنشر مسار تعليمي؟ اضغط هنا

So

67   0   0.0 ( 0 )
 نشر من قبل Yael Naze
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In a recent paper, Vink et al. analyzed some spectropolarimetry data of O-type stars. Here we comment on our disagreement with some points presented in this paper, with the hope of helping to fully grasp the scientific implication of these measurements.

قيم البحث

اقرأ أيضاً

Transitional disks are structures of dust and gas around young stars with large inner cavities in which planet formation may occur. Lopsided dust distributions are observed in the dust continuum emission at millimeter wavelengths. These asymmetrical structures can be explained as the result of an enhanced gas density vortex where the dust is trapped potentially promoting the rapid growth to the planetesimal scale. AB Aur hosts a transitional disk with a clear horseshoe morphology which strongly suggests the presence of a dust trap. Our goal is to investigate its formation and the possible effects on the gas chemistry. We used the NOEMA interferometer to image the 1mm continuum dust emission and the 13CO J=2->1, C18O J=2->1, SO J=56->45 and H2CO J=303->202 rotational lines. Line integrated intensity ratio images are built to investigate the chemical changes within the disk. We have used a single point (n,T) chemical model to investigate the lifetime of gaseous CO, H2CO and SO in the dust trap. Our model shows that for densities >10^7 cm^-3, the SO molecules are depleted (directly frozen or converted into SO2 and then frozen out) in less than 0.1 Myr. The lower SO abundance towards the dust trap could indicate that a larger fraction of the gas is in a high density environment. Gas dynamics, grain growth and gas chemistry are coupled in the planet formation process. Because of the strong dependence of SO abundance on the gas density, the sulfur chemistry can be used as a chemical diagnostic to detect the birthsites of future planets. However, the large uncertainties inherent to chemical models and the limited knowledge of the disk physical structure and initial conditions are important drawbacks.
We present the first physical characterization of the young open cluster VVV CL041. We spectroscopically observed the cluster main-sequence stellar population and a very-massive star candidate: WR62-2. CMFGEN modeling to our near-infrared spectra ind icates that WR62-2 is a very luminous (10$^{6.4pm0.2} L_{odot}$) and massive ($sim80 M_{odot}$) star.
We present the results of high resolution spectra of seven stars in the field of NGC 2482, an open star cluster of age 447 Myr. We confirm the previously published values of the radial velocity and metallicity of one giant star. This gives us confide nce that another giant star is a bona fide cluster member, and that three stars significantly above the main sequence in a color-magnitude diagram are not members, on the basis of discordant radial velocities. Another star ~1.7 mag above the main sequence may or may not be a member. Its [Fe/H] value is ~0.1 dex more positive than two giant stars studied, and its radial velocity is 3-4 km/s less than that of the two giant stars, which is a significant difference if the velocity dispersion of the cluster is less than +/-1 km/s. To a large extent the width of the main sequence seems to be due to the presence of foreground and background stars in the same general direction, stars that masquerade as main sequence stars in the cluster.
These are written comments about the Read Paper A Bayesian criterion for singular models by M. Drton and M. Plummer, read to the Royal Statistical Society on October 5, 2016. The discussion was delivered by Judith Rousseau.
Global gauge anomalies in $6d$ associated with non-trivial homotopy groups $pi_6(G)$ for $G=SU(2)$, $SU(3)$, and $G_2$ were computed and utilized in the past. In the modern bordism point of view of anomalies, however, they come from the bordism group s $Omega^text{spin}_7(BG)$, which are in fact trivial and therefore preclude their existence. Instead, it was noticed that a proper treatment of the $6d$ Green-Schwarz mechanism reproduces the same anomaly cancellation conditions derived from $pi_6(G)$. In this paper, we revisit and clarify the relation between these two different approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا