ترغب بنشر مسار تعليمي؟ اضغط هنا

Big fish, small fish: Two New Ultra-Faint Satellites of the Milky Way

173   0   0.0 ( 0 )
 نشر من قبل Vasily Belokurov
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف V. Belokurov




اسأل ChatGPT حول البحث

We report the discovery of two new Milky Way satellites in the neighboring constellations of Pisces and Pegasus identified in data from the Sloan Digital Sky Survey. Pisces II, an ultra-faint dwarf galaxy lies at the distance of ~180 kpc, some 15 degrees away from the recently detected Pisces I. Segue 3, an ultra-faint star cluster lies at the distance of 16 kpc. We use deep follow-up imaging obtained with the 4-m Mayall telescope at Kitt Peak National Observatory to derive their structural parameters. Pisces II has a half-light radius of ~60 pc, while Segue 3 is twenty times smaller at only 3pc.



قيم البحث

اقرأ أيضاً

173 - Joshua D. Simon 2018
The second data release from the Gaia mission (DR2) provides a comprehensive and unprecedented picture of the motions of astronomical sources in the plane of the sky, extending from the solar neighborhood to the outer reaches of the Milky Way. I pres ent proper motion measurements based on Gaia DR2 for 17 ultra-faint dwarf galaxies within 100 kpc of the Milky Way. I compile the spectroscopically-confirmed member stars in each dwarf bright enough for Gaia astrometry from the literature, producing member samples ranging from 2 stars in Triangulum II to 68 stars in Bootes I. From the spectroscopic member catalogs I estimate the proper motion of each system. I find good agreement with the proper motions derived by the Gaia collaboration for Bootes I and Leo I. The tangential velocities for 14 of the 17 dwarfs are determined to better than 50 km/s, more than doubling the sample of such measurements for Milky Way satellite galaxies. The orbital pericenters are well-constrained, with a median value of 38 kpc. Only one satellite, Tucana III, is on an orbit passing within 15 kpc of the Galactic center, suggesting that the remaining ultra-faint dwarfs are unlikely to have experienced severe tidal stripping. As a group, the ultra-faint dwarfs are on high-velocity, eccentric, retrograde trajectories, with nearly all of them having space motions exceeding 370 km/s. In a low-mass (M_vir = 0.8 x 10^12 M_sun) Milky Way potential, eight out of the 17 galaxies lack well-defined apocenters and appear likely to be on their first infall, indicating that the Milky Way mass may be larger than previously estimated or that many of the ultra-faint dwarfs are associated with the Magellanic Clouds. The median eccentricity of the ultra-faint dwarf orbits is 0.79, similar to the values seen in numerical simulations, but distinct from the rounder orbits of the more luminous dwarf spheroidals.
We combine a series of high-resolution simulations with semi-analytic galaxy formation models to follow the evolution of a system resembling the Milky Way and its satellites. The semi-analytic model is based on that developed for the Millennium Simul ation, and successfully reproduces the properties of galaxies on large scales, as well as those of the Milky Way. In this model, we are able to reproduce the luminosity function of the satellites around the Milky Way by preventing cooling in haloes with Vvir < 16.7 km/s (i.e. the atomic hydrogen cooling limit) and including the impact of the reionization of the Universe. The physical properties of our model satellites (e.g. mean metallicities, ages, half-light radii and mass-to-light ratios) are in good agreement with the latest observational measurements. We do not find a strong dependence upon the particular implementation of supernova feedback, but a scheme which is more efficient in galaxies embedded in smaller haloes, i.e. shallower potential wells, gives better agreement with the properties of the ultra-faint satellites. Our model predicts that the brightest satellites are associated with the most massive subhaloes, are accreted later (z $lta$ 1), and have extended star formation histories, with only 1 per cent of their stars made by the end of the reionization. On the other hand, the faintest satellites were accreted early, are dominated by stars with age > 10 Gyr, and a few of them formed most of their stars before the reionization was complete. Objects with luminosities comparable to those of the classical MW satellites are associated with dark matter subhaloes with a peak circular velocity $gta$ 10 km/s, in agreement with the latest constraints.
Recent studies suggest that only three of the twelve brightest satellites of the Milky Way (MW) inhabit dark matter halos with maximum circular velocity, V_max, exceeding 30km/s. This is in apparent contradiction with the LCDM simulations of the Aqua rius Project, which suggest that MW-sized halos should have at least 8 subhalos with V_max>30km/s. The absence of luminous satellites in such massive subhalos is thus puzzling and may present a challenge to the LCDM paradigm. We note, however, that the number of massive subhalos depends sensitively on the (poorly-known) virial mass of the Milky Way, and that their scarcity makes estimates of their abundance from a small simulation set like Aquarius uncertain. We use the Millennium Simulation series and the invariance of the scaled subhalo velocity function (i.e., the number of subhalos as a function of u, the ratio of subhalo V_max to host halo virial velocity, V_200) to secure improved estimates of the abundance of rare massive subsystems. In the range 0.1< u<0.5, N_sub(> u) is approximately Poisson-distributed about an average given by <N_sub>=10.2x( u/0.15)^(-3.11). This is slightly lower than in Aquarius halos, but consistent with recent results from the Phoenix Project. The probability that a LCDM halo has 3 or fewer subhalos with V_max above some threshold value, V_th, is then straightforward to compute. It decreases steeply both with decreasing V_th and with increasing halo mass. For V_th=30km/s, ~40% of M_halo=10^12 M_sun halos pass the test; fewer than 5% do so for M_halo>= 2x10^12 M_sun; and the probability effectively vanishes for M_halo>= 3x 10^12 M_sun. Rather than a failure of LCDM, the absence of massive subhalos might simply indicate that the Milky Way is less massive than is commonly thought.
White dwarf stars are a well-established tool for studying Galactic stellar populations. Two white dwarfs in a tight binary system offer us an additional messenger - gravitational waves - for exploring the Milky Way and its immediate surroundings. Gr avitational waves produced by double white dwarf (DWD) binaries can be detected by the future Laser Interferometer Space Antenna (LISA). Numerous and widespread DWDs have the potential to probe shapes, masses and formation histories of the stellar populations in the Galactic neighbourhood. In this work we outline a method for estimating the total stellar mass of Milky Way satellite galaxies based on the number of DWDs detected by LISA. To constrain the mass we perform a Bayesian inference using binary population synthesis models and considering the number of detected DWDs associated with the satellite and the measured distance to the satellite as the only inputs. Using a fiducial binary population synthesis model we find that for large satellites the stellar masses can be recovered to within 1) a factor two if the star formation history is known and 2) an order of magnitude when marginalising over different star formation history models. For smaller satellites we can place upper limits on their stellar mass. Gravitational wave observations can provide mass measurements for large satellites that are comparable, and in some cases more precise, than standard electromagnetic observations.
We study the fluid dynamics of two fish-like bodies with synchronised swimming patterns. Our studies are based on two-dimensional simulations of viscous incompressible flows. We distinguish between motion patterns that are externally imposed on the s wimmers and self-propelled swimmers that learn manoeuvres to achieve certain goals. Simulations of two rigid bodies executing pre-specified motion indicate that flow-mediated interactions can lead to substantial drag reduction and may even generate thrust intermittently. In turn we examine two self-propelled swimmers arranged in a leader-follower configuration, with a-priori specified body-deformations. We find that the swimming of the leader remains largely unaffected, while the follower experiences either an increase or decrease in swimming speed, depending on the initial conditions. Finally, we consider a follower that synchronises its motion so as to minimise its lateral deviations from the leaders path. The leader employs a steady gait while the follower uses a reinforcement learning algorithm to adapt its swimming-kinematics. We find that swimming in a synchronised tandem can yield up to about 30% reduction in energy expenditure for the follower, in addition to a 20% increase in its swimming-efficiency. The present results indicate that synchronised swimming of two fish can be energetically beneficial.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا