ﻻ يوجد ملخص باللغة العربية
Band gap modification for small-diameter (1 nm) silicon nanowires resulting from the use of different species for surface termination is investigated by density functional theory calculations. Because of quantum confinement, small-diameter wires exhibit a direct band gap that increases as the wire diameter narrows, irrespective of surface termination. This effect has been observed in previous experimental and theoretical studies for hydrogenated wires. For a fixed cross-section, the functional group used to saturate the silicon surface significantly modifies the band gap, resulting in relative energy shifts of up to an electronvolt. The band gap shifts are traced to details of the hybridization between the silicon valence band and the frontier orbitals of the terminating group, which is in competition with quantum confinement.
The role of defects in van der Waals heterostructures made of graphene and hexagonal boron nitride (h-BN) is studied by a combination of ab initio and model calculations. Despite the weak van der Waals interaction between layers, defects residing in
Bandstructure effects in the electronic transport of strongly quantized silicon nanowire field-effect-transistors (FET) in various transport orientations are examined. A 10-band sp3d5s* semi-empirical atomistic tight-binding model coupled to a self c
Graphene has attracted increasing interests due to its remarkable properties, however, the zero band gap of monolayer graphene might limit its further electronic and optoelectronic applications. Herein, we have successfully synthesized monolayer sili
Graphene has shown great application potentials as the host material for next generation electronic devices. However, despite its intriguing properties, one of the biggest hurdles for graphene to be useful as an electronic material is its lacking of
By means of ab initio calculations we investigate the possibility of existence of a boron nitride (BN) porous two-dimensional nanosheet which is geometrically similar to the carbon allotrope known as biphenylene carbon. The proposed structure, which