ترغب بنشر مسار تعليمي؟ اضغط هنا

Ion detection in the photoionization of a Rb Bose-Einstein condensate

172   0   0.0 ( 0 )
 نشر من قبل Mark Bason
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two-photon ionization of Rubidium atoms in a magneto-optical trap and a Bose-Einstein condensate (BEC) is experimentally investigated. Using 100 ns laser pulses, we detect single ions photoionized from the condenstate with a 35(10)% efficiency. The measurements are performed using a quartz cell with external electrodes, allowing large optical access for BECs and optical lattices.



قيم البحث

اقرأ أيضاً

Photoionization of a cold atomic sample offers intriguing possibilities to observe collective effects at extremely low temperatures. Irradiation of a rubidium condensate and of cold rubidium atoms within a magneto-optical trap with laser pulses ioniz ing through 1-photon and 2-photon absorption processes has been performed. Losses and modifications in the density profile of the remaining trapped cold cloud or the remaining condensate sample have been examined as function of the ionizing laser parameters. Ionization cross-sections were measured for atoms in a MOT, while in magnetic traps losses larger than those expected for ionization process were measured.
We report the formation of a dual-species Bose-Einstein condensate of $^{87}$Rb and $^{133}$Cs in the same trapping potential. Our method exploits the efficient sympathetic cooling of $^{133}$Cs via elastic collisions with $^{87}$Rb, initially in a m agnetic quadrupole trap and subsequently in a levitated optical trap. The two condensates each contain up to $2times10^{4}$ atoms and exhibit a striking phase separation, revealing the mixture to be immiscible due to strong repulsive interspecies interactions. Sacrificing all the $^{87}$Rb during the cooling, we create single species $^{133}$Cs condensates of up to $6times10^{4}$ atoms.
We have performed two-photon excitation via the 6P3/2 state to n=50-80 S or D Rydberg state in Bose-Einstein condensates of rubidium atoms. The Rydberg excitation was performed in a quartz cell, where electric fields generated by plates external to t he cell created electric charges on the cell walls. Avoiding accumulation of the charges and realizing good control over the applied electric field was obtained when the fields were applied only for a short time, typically a few microseconds. Rydberg excitations of the Bose-Einstein condensates loaded into quasi one-dimensional traps and in optical lattices have been investigated. The results for condensates expanded to different sizes in the one-dimensional trap agree well with the intuitive picture of a chain of Rydberg excitations controlled by the dipole-dipole interaction. The optical lattice applied along the one-dimensional geometry produces localized, collective Rydberg excitations controlled by the nearest-neighbour blockade.
We report observations of the formation and subsequent decay of a vortex lattice in a Bose-Einstein condensate confined in a hybrid optical-magnetic trap. Vortices are induced by rotating the anharmonic magnetic potential that provides confinement in the horizontal plane. We present simple numerical techniques based on image analysis to detect vortices and analyze their distributions. We use these methods to quantify the amount of order present in the vortex distribution as it transitions from a disordered array to the energetically favorable ordered lattice.
We describe our experimental setup for creating stable Bose-Einstein condensates of Rb-85 with tunable interparticle interactions. We use sympathetic cooling with Rb-87 in two stages, initially in a tight Ioffe-Pritchard magnetic trap and subsequentl y in a weak, large-volume crossed optical dipole trap, using the 155 G Feshbach resonance to manipulate the elastic and inelastic scattering properties of the Rb-85 atoms. Typical Rb-85 condensates contain 4 x 10^4 atoms with a scattering length of a=+200a_0. Our minimalist apparatus is well-suited to experiments on dual-species and spinor Rb condensates, and has several simplifications over the Rb-85 BEC machine at JILA (Papp, 2007; Papp and Wieman, 2006), which we discuss at the end of this article.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا