ترغب بنشر مسار تعليمي؟ اضغط هنا

Interplane charge dynamics in a valence-bond dynamical mean-field theory of cuprate superconductors

186   0   0.0 ( 0 )
 نشر من قبل Michel Ferrero
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present calculations of the interplane charge dynamics in the normal state of cuprate superconductors within the valence-bond dynamical mean-field theory. We show that by varying the hole doping, the c-axis optical conductivity and resistivity dramatically change character, going from metallic-like at large doping to insulating-like at low-doping. We establish a clear connection between the behavior of the c-axis optical and transport properties and the destruction of coherent quasiparticles as the pseudogap opens in the antinodal region of the Brillouin zone at low doping. We show that our results are in good agreement with spectroscopic and optical experiments.

قيم البحث

اقرأ أيضاً

We introduce a valence-bond dynamical mean-field theory of doped Mott insulators. It is based on a minimal cluster of two orbitals, each associated with a different region of momentum space and hybridized to a self-consistent bath. The low-doping reg ime is characterized by singlet formation and the suppression of quasiparticles in the antinodal regions, leading to the formation of Fermi arcs. This is described in terms of an orbital-selective transition in reciprocal space. The calculated tunneling and photoemission spectra are consistent with the phenomenology of the normal state of cuprates. We derive a low-energy description of these effects using a generalization of the slave-boson method.
The dynamical mean-field theory (DMFT) is a widely applicable approximation scheme for the investigation of correlated quantum many-particle systems on a lattice, e.g., electrons in solids and cold atoms in optical lattices. In particular, the combin ation of the DMFT with conventional methods for the calculation of electronic band structures has led to a powerful numerical approach which allows one to explore the properties of correlated materials. In this introductory article we discuss the foundations of the DMFT, derive the underlying self-consistency equations, and present several applications which have provided important insights into the properties of correlated matter.
91 - R. L. Doretto 2020
We study a system of interacting triplons (the elementary excitations of a valence-bond solid) described by an effective interacting boson model derived within the bond-operator formalism. In particular, we consider the square lattice spin-1/2 $J_1$- $J_2$ antiferromagnetic Heisenberg model, focus on the intermediate parameter region, where a quantum paramagnetic phase sets in, and consider the columnar valence-bond solid phase. Within the bond-operator theory, the Heisenberg model is mapped into an effective boson model in terms of triplet operators $t$. The effective boson model is studied at the harmonic approximation and the energy of the triplons and the expansion of the triplon operators $b$ in terms of the triplet operators $t$ are determined. Such an expansion allows us to performed a second mapping, and therefore, determine an effective interacting boson model in terms of the triplon operators $b$. We then consider systems with a fixed number of triplons and determined the ground-state energy and the spectrum of elementary excitations within a mean-field approximation. We show that many-triplon states are stable, the lowest-energy ones are constituted by a small number of triplons, and the excitation gaps are finite. For $J_2=0.48 J_1$ and $J_2=0.52 J_1$, we also calculate spin-spin and dimer-dimer correlation functions, dimer order parameters, and the bipartite von Neumann entanglement entropy within our mean-field formalism in order to determine the properties of the many-triplon state as a function of the triplon number. We find that the spin and the dimer correlations decay exponentially and that the entanglement entropy obeys an area law, regardless the triplon number. Moreover, only for $J_2=0.48 J_1$, the spin correlations indicate that the many-triplon states with large triplon number might display a more homogeneous singlet pattern than the columnar valence-bond solid.
Dynamical mean field methods are used to calculate the phase diagram, many-body density of states, relative orbital occupancy and Fermi surface shape for a realistic model of $LaNiO_3$-based superlattices. The model is derived from density functional band calculations and includes oxygen orbitals. The combination of the on-site Hunds interaction and charge-transfer between the transition metal and the oxygen orbitals is found to reduce the orbital polarization far below the levels predicted either by band structure calculations or by many-body analyses of Hubbard-type models which do not explicitly include the oxygen orbitals. The findings indicate that heterostructuring is unlikely to produce one band model physics and demonstrate the fundamental inadequacy of modeling the physics of late transition metal oxides with Hubbard-like models.
We carried out AC magnetic susceptibility measurements and muon spin relaxation spectroscopy on the cubic double perovskite Ba2YMoO6, down to 50 mK. Below ~1 K the muon relaxation is typical of a magnetic insulator with a spin-liquid type ground stat e, i.e. without broken symmetries or frozen moments. However, the AC susceptibility revealed a dilute-spin-glass like transition below ~ 1 K. Antiferromagnetically coupled Mo5+ 4d1 electrons in triply degenerate t2g orbitals are in this material arranged in a geometrically frustrated fcc lattice. Bulk magnetic susceptibility data has previously been interpreted in terms of a freezing to a heterogeneous state with non-magnetic sites where 4d^1 electrons have paired in spin-singlets dimers, and residual unpaired Mo5+ 4d1 electrons. Based on the magnetic heat capacity data it has been suggested that this heterogeneity is the result of kinetic constraints intrinsic to the physics of the pure system (possibly due to topological overprotection), leading to a self-induced glass of valence bonds between neighbouring 4d1 electrons. The muSR relaxation unambiguously points to a static heterogeneous state with a static arrangement of unpaired electrons isolated by spin-singlet (valence bond) dimers between the majority of Mo5+ 4d electrons. The AC susceptibility data indicate that the residual magnetic moments freeze into a dilute-spin-glass-like state. This is in apparent contradiction with the muon-spin decoupling at 50 mK in fields up to 200 mT, which indicates that, remarkably, the time scale of the field fluctuations from the residual moments is ~ 5 ns. Comparable behaviour has been observed in other geometrically frustrated magnets with spin-liquid-like behaviour and the implications of our observations on Ba2YMoO6 are discussed in this context.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا