ترغب بنشر مسار تعليمي؟ اضغط هنا

The First Release of the CSTAR Point Source Catalog from Dome A, Antarctica

152   0   0.0 ( 0 )
 نشر من قبل Xu Zhou Dr.
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In 2008 January the 24th Chinese expedition team successfully deployed the Chinese Small Telescope ARray (CSTAR) to DomeA, the highest point on the Antarctic plateau. CSTAR consists of four 14.5cm optical telescopes, each with a different filter (g, r, i and open) and has a 4.5degree x 4.5degree field of view (FOV). It operates robotically as part of the Plateau Observatory, PLATO, with each telescope taking an image every 30 seconds throughout the year whenever it is dark. During 2008, CSTAR #1 performed almost flawlessly, acquiring more than 0.3 million i-band images for a total integration time of 1728 hours during 158 days of observations. For each image taken under good sky conditions, more than 10,000 sources down to 16 mag could be detected. We performed aperture photometry on all the sources in the field to create the catalog described herein. Since CSTAR has a fixed pointing centered on the South Celestial Pole (Dec =-90 degree), all the sources within the FOV of CSTAR were monitored continuously for several months. The photometric catalog can be used for studying any variability in these sources, and for the discovery of transient sources such as supernovae, gamma-ray bursts and minor planets.



قيم البحث

اقرأ أيضاً

88 - Bin Ma , Zhaohui Shang , Yi Hu 2018
The three Antarctic Survey Telescopes (AST3) aim to carry out time domain imaging survey at Dome A, Antarctica. The first of the three telescopes (AST3-1) was successfully deployed on January 2012. AST3-1 is a 500,mm aperture modified Schmidt telesco pe with a 680,mm diameter primary mirror. AST3-1 is equipped with a SDSS $i$ filter and a 10k $times$ 10k frame transfer CCD camera, reduced to 5k $times$ 10k by electronic shuttering, resulting in a 4.3 deg$^2$ field-of-view. To verify the capability of AST3-1 for a variety of science goals, extensive commissioning was carried out between March and May 2012. The commissioning included a survey covering 2000 deg$^2$ as well as the entire Large and Small Magellanic Clouds. Frequent repeated images were made of the center of the Large Magellanic Cloud, a selected exoplanet transit field, and fields including some Wolf-Rayet stars. Here we present the data reduction and photometric measurements of the point sources observed by AST3-1. We have achieved a survey depth of 19.3,mag in 60 s exposures with 5,mmag precision in the light curves of bright stars. The facility achieves sub-mmag photometric precision under stable survey conditions, approaching its photon noise limit. These results demonstrate that AST3-1 at Dome A is extraordinarily competitive in time-domain astronomy, including both quick searches for faint transients and the detection of tiny transit signals.
The Chinese Small Telescope ARray (CSTAR) has observed an area around the Celestial South Pole at Dome A since 2008. About $20,000$ light curves in the i band were obtained lasting from March to July, 2008. The photometric precision achieves about 4 mmag at i = 7.5 and 20 mmag at i = 12 within a 30 s exposure time. These light curves are analyzed using Lomb--Scargle, Phase Dispersion Minimization, and Box Least Squares methods to search for periodic signals. False positives may appear as a variable signature caused by contaminating stars and the observation mode of CSTAR. Therefore the period and position of each variable candidate are checked to eliminate false positives. Eclipsing binaries are removed by visual inspection, frequency spectrum analysis and locally linear embedding technique. We identify 53 eclipsing binaries in the field of view of CSTAR, containing 24 detached binaries, 8 semi-detached binaries, 18 contact binaries, and 3 ellipsoidal variables. To derive the parameters of these binaries, we use the Eclipsing Binaries via Artificial Intelligence (EBAI) method. The primary and the secondary eclipse timing variations (ETVs) for semi-detached and contact systems are analyzed. Correlated primary and secondary ETVs confirmed by false alarm tests may indicate an unseen perturbing companion. Through ETV analysis, we identify two triple systems (CSTAR J084612.64-883342.9 and CSTAR J220502.55-895206.7). The orbital parameters of the third body in CSTAR J220502.55-895206.7 are derived using a simple dynamical model.
Most of the sky has been imaged with NOAOs telescopes from both hemispheres. While the large majority of these data were obtained for PI-led projects and almost all of the images are publicly available, only a small fraction have been released to the community via well-calibrated and easily accessible catalogs. We are remedying this by creating a catalog of sources from most of the public data taken on the CTIO-4m+DECam and the KPNO-4m+Mosaic3. This catalog, called the NOAO Source Catalog (NSC), contains over 2.9 billion unique objects, 34 billion individual source measurements, covers ~30,000 square degrees of the sky, has depths of ~23rd magnitude in most broadband filters with ~1-2% photometric precision, and astrometric accuracy of ~7 mas. In addition, ~2 billion objects and ~21,000 square degrees of sky have photometry in three or more bands. The NSC will be useful for exploring stellar streams, dwarf satellite galaxies, QSOs, high-proper motion stars, variable stars and other transients. The NSC catalog is publicly available via the NOAO Data Lab service.
The Chinese Small Telescope ARray (CSTAR) carried out high-cadence time-series observations of 20.1 square degrees centered on the South Celestial Pole during the 2008, 2009 & 2010 winter seasons from Dome A in Antarctica. The nearly-continuous 6 mon ths of dark conditions during each observing season allowed for >10^6 images to be collected through gri and clear filters, resulting in the detection of >10^4 sources over the course of 3 years of operation. The nearly space-like conditions in the Antarctic plateau are an ideal testbed for the suitability of very small-aperture (<20 cm) telescopes to detect transient events, variable stars and stellar flares. We present the results of a robust search for such objects using difference image analysis of the data obtained during the 2009 & 2010 winter seasons. While no transients were found, we detected 29 flaring events and find a normalized flaring rate of 5+-4x10^-7 flare/hour for late-K dwarfs, 1+-1x10^-6 flare/hour for M dwarfs and 7+-1x10^-7 flare/hour for all other stars in our sample. We suggest future small-aperture telescopes planned for deployment at Dome A would benefit from a tracking mechanism, to help alleviate effects from ghosting, and a finer pixel scale, to increase the telescopes sensitivity to faint objects. We find that the light curves of non-transient sources have excellent photometric qualities once corrected for systematics, and are limited only by photon noise and atmospheric scintillation.
332 - Bin Ma , Yi Hu , Zhaohui Shang 2020
The 0.5,m Antarctic Survey Telescopes (AST3) were designed for time-domain optical/infrared astronomy. They are located in Dome~A, Antarctica, where they can take advantage of the continuous dark time during winter. Since the site is unattended in wi nter, everything for the operation, from observing to data reduction, had to be fully automated. Here, we present a brief overview of the AST3 project and some of its unique characteristics due to its location in Antarctica. We summarise the various components of the survey, including the customized hardware and software, that make complete automation possible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا