ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetohydrodynamics of superfluid and superconducting neutron star cores

124   0   0.0 ( 0 )
 نشر من قبل Kostas Glampedakis
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Mature neutron stars are cold enough to contain a number of superfluid and superconducting components. These systems are distinguished by the presence of additional dynamical degrees of freedom associated with superfluidity. In order to consider models with mixtures of condensates we need to develop a multifluid description that accounts for the presence of rotational neutron vortices and magnetic proton fluxtubes. We also need to model the forces that impede the motion of vortices and fluxtubes, and understand how these forces act on the condensates. This paper concerns the development of such a model for the outer core of a neutron star, where superfluid neutrons co-exist with a type II proton superconductor and an electron gas. We discuss the hydrodynamics of this system, focusing on the role of the entrainment effect, the magnetic field, the vortex/fluxtube tension and the dissipative mutual friction forces. Out final results can be directly applied to a number of interesting astrophysical scenarios, e.g. associated with neutron star oscillations or the evolution of the large scale magnetic field.



قيم البحث

اقرأ أيضاً

113 - T. Sidery , M. A. Alpar 2009
We investigate dynamical coupling timescales of a neutron stars superfluid core, taking into account the interactions of quantized neutron vortices with quantized flux lines of the proton superconductor in addition to the previously considered scatte ring of the charged components against the spontaneous magnetization of the neutron vortex line. We compare the cases where vortex motion is constrained in different ways by the array of magnetic flux tubes associated with superconducting protons. This includes absolute pinning to and creep across a uniform array of flux lines. The effect of a toroidal arrangement of flux lines is also considered. The inclusion of a uniform array of flux tubes in the neutron star core significantly decreases the timescale of coupling between the neutron and proton fluid constituents in all cases. For the toroidal component, creep response similar to that of the inner crust superfluid is possible.
We study neutrino energy emission rates (emissivities) due to electron bremsstrahlung produced by $ee$ and $ep$ collisions in the superfluid neutron star cores. The neutrino emission due to $ee$ collisions is shown to be the dominant neutrino reactio n at not too high temperatures ($T la 10^8$ K) in dense matter if all other neutrino reactions involving nucleons are strongly suppressed by neutron and proton superfluidity. Simple practical expressions for the $ee$ and $ep$ neutrino emissivities are obtained. The efficiency of various neutrino reactions in the superfluid neutron-star cores is discussed for the cases of standard neutrino energy losses and the losses enhanced by the direct Urca process.
100 - J.G. Elfritz , J.A. Pons , N. Rea 2015
The study of long-term evolution of neutron star (NS) magnetic fields is key to understanding the rich diversity of NS observations, and to unifying their nature despite the different emission mechanisms and observed properties. Such studies in princ iple permit a deeper understanding of the most important parameters driving their apparent variety, e.g. radio pulsars, magnetars, x-ray dim isolated neutron stars, gamma-ray pulsars. We describe, for the first time, the results from self-consistent magneto-thermal simulations considering not only the effects of the Hall-driven field dissipation in the crust, but adding a complete set of proposed driving forces in a superconducting core. We emphasize how each of these core-field processes drive magnetic evolution and affect observables, and show that when all forces are considered together in vectorial form, the net expulsion of core magnetic flux is negligible, and will have no observable effect in the crust (consequently in the observed surface emission) on megayear time-scales. Our new simulations suggest that strong magnetic fields in NS cores (and the signatures on the NS surface) will persist long after the crustal magnetic field has evolved and decayed, due to the weak combined effects of dissipation and expulsion in the stellar core.
We identify the possible ground states for a mixture of two superfluid condensates (one neutral, the other electrically charged) using a phenomenological Ginzburg-Landau model. While this framework is applicable to any interacting condensed-matter mi xture of a charged and a neutral component, we focus on nuclear matter in neutron star cores, where proton and neutron condensates are coupled via non-dissipative entrainment. We employ the Skyrme interaction to determine the neutron stars equilibrium composition, and hence obtain realistic coefficients for our Ginzburg-Landau model at each depth within the stars core. We then use the Ginzburg-Landau model to determine the ground state in the presence of a magnetic field. In this way, we obtain superconducting phase diagrams for six representative Skyrme models, revealing the microphysical magnetic flux distribution throughout the neutron star core. The phase diagrams are rather complex and the locations of most of the phase transitions can only be determined through numerical calculations. Nonetheless, we find that for all equations of state considered in this work, much of the outer core exhibits type-1.5 superconductivity, rather than type-II superconductivity as is generally assumed. For local magnetic field strengths $lesssim 10^{14} , {rm G}$, the magnetic flux is distributed inhomogeneously, with bundles of magnetic fluxtubes separated by flux-free Meissner regions. We provide an approximate criterion to determine the transition between this type-1.5 phase and the type-I region in the inner core.
274 - M.E. Gusakov , 2014
Observations of massive ($M approx 2.0~M_odot$) neutron stars (NSs), PSRs J1614-2230 and J0348+0432, rule out most of the models of nucleon-hyperon matter employed in NS simulations. Here we construct three possible models of nucleon-hyperon matter c onsistent with the existence of $2~M_odot$ pulsars as well as with semi-empirical nuclear matter parameters at saturation, and semi-empirical hypernuclear data. Our aim is to calculate for these models all the parameters necessary for modelling dynamics of hyperon stars (such as equation of state, adiabatic indices, thermodynamic derivatives, relativistic entrainment matrix, etc.), making them available for a potential user. To this aim a general non-linear hadronic Lagrangian involving $sigmaomegarhophisigma^ast$ meson fields, as well as quartic terms in vector-meson fields, is considered. A universal scheme for calculation of the $ell=0,1$ Landau Fermi-liquid parameters and relativistic entrainment matrix is formulated in the mean-field approximation. Use of this scheme allow us to obtain numerical tables with the equation of state, Landau quasiparticle effective masses, adiabatic indices, the $ell=0,1$ Landau Fermi-liquid parameters, and the relativistic entrainment matrix for the selected models of nucleon-hyperon matter. These data are available on-line and suitable for numerical implementation in computer codes modelling various dynamical processes in NSs, in particular, oscillations of superfluid NSs and their cooling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا