ترغب بنشر مسار تعليمي؟ اضغط هنا

Can the X(4350) narrow structure be a $1^{-+}$ exotic state?

35   0   0.0 ( 0 )
 نشر من قبل Marina Nielsen
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the QCD sum rules we test if the new narrow structure, the X(4350) recently observed by the Belle Collaboration, can be described as a $J^{PC}=1^{-+}$ exotic $D_s^*D_{s0}^*$ molecular state. We consider the contributions of condensates up to dimension eight, we work at leading order in $alpha_s$ and we keep terms which are linear in the strange quark mass $m_s$. The mass obtained for such state is $m_{D_s^*{D}_{s0}^*}=(5.05pm 0.19)$ GeV. We also consider a molecular $1^{-+}, D^{*}{D}_0^{*}$ current and we obtain $m_{D^*{D}_0^*}=(4.92pm 0.08)$ GeV. We conclude that it is not possible to describe the X(4350) structure as a $1^{-+} D_s^*{D}_{s0}^*$ molecular state.

قيم البحث

اقرأ أيضاً

It has been proposed recently (Phys. Rev. Lett. 115 (2015), 022001) that the charmoniumlike state named X(3915) and suggested to be a $0^{++}$ scalar, is just the helicity-0 realisation of the $2^{++}$ tensor state $chi_{c2}(3930)$. This scenario wou ld call for a helicity-0 dominance, which were at odds with the properties of a conventional tensor charmonium, but might be compatible with some exotic structure of the $chi_{c2}(3930)$. In this paper, we investigate, if such a scenario is compatible with the assumption that the $chi_{c2}(3930)$ is a $D^*bar D^*$ molecular state - a spin partner of the $X(3872)$ treated as a shallow bound state. We demonstrate that for a tensor molecule the helicity-0 component vanishes for vanishing binding energy and accordingly for a shallow bound state a helicity-2 dominance would be natural. However, for the $chi_{c2}(3930)$, residing about 100 MeV below the $D^*bar D^*$ threshold, there is no a priori reason for a helicity-2 dominance and thus the proposal formulated in the above mentioned reference might indeed point at a molecular structure of the tensor state. Nevertheless, we find that the experimental data currently available favour a dominant contribution of the helicity-2 amplitude also in this scenario, if spin symmetry arguments are employed to relate properties of the molecular state to those of the X(3872). We also discuss what research is necessary to further constrain the analysis.
Strong interaction physics under extreme conditions of high temperature and/or density is of central interest in modern nuclear physics for experimentalists and theorists alike. In order to investigate such systems, model approaches that include hadr ons and quarks in a unified approach, will be discussed. Special attention will be given to high-density matter as it occurs in neutron stars. Given the current observational limits for neutron star masses, the properties of hyperonic and hybrid stars will be determined. In this context especially the question of the extent, to which exotic particles like hyperons and quarks affect star masses, will be discussed.
The production of $X(4350)$ in the $gamma gamma$ interactions that occur in proton-proton, proton-nucleus and nucleus-nucleus collisions at the CERN Large Hadron Collider (LHC) is investigated and predictions for the kinematical ranges probed by the ALICE and LHCb Collaborations are presented. We focus on the $gamma gamma rightarrow phi J/Psi$ process, which have been measured by the Belle Collaboration, and present parameter free predictions for the total cross sections at the LHC energies. Our results demonstrate that the experimental study of this process is feasible and can be used to confirm or not the existence of the $X(4350)$ state. Finally, for completeness, we present predictions for the production of the $X(3915)$ state in the $gamma gamma rightarrow omega J/Psi$ process and show that this exotic state can also be probed in $gamma gamma$ interactions at the LHC.
153 - Jing Zhou , D. L. Zhou 2021
With the development of quantum many-body simulator, Hamiltonian tomography has become an increasingly important technique for verification of quantum devices. Here we investigate recovering the Hamiltonians of two spin chains with 2-local interactio ns and 3-local interactions by measuring local observables. For these two models, we show that when the chain length reaches a certain critical number, we can recover the local Hamiltonian from its one steady state by solving the homogeneous operator equation (HOE) developed in Ref. [1]. To explain the existence of such a critical chain length, we develop an alternative method to recover Hamiltonian by solving the energy eigenvalue equations (EEE). By using the EEE method, we completely recovered the numerical results from the HOE method. Then we theoretically prove the equivalence between the HOE method and the EEE method. In particular, we obtain the analytical expression of the rank of the constraint matrix in the HOE method by using the EEE method, which can be used to determine the correct critical chain length in all the cases.
The mass and meson-current coupling constant of the resonance $X(5568)$, as well as the width of the decay $X(5568)to B_s^{ast}pi$ are calculated by modeling the exotic $X(5568)$ resonance as a diquark-antidiquark state $% X_b=[su][bd]$ with quantum numbers $J^{P}=1^{+}$. The calculations are made employing QCD two-point sum rule method, where the quark, gluon and mixed vacuum condensates up to dimension eight are taken into account. The sum rule approach on the light-cone in its soft-meson approximation is used to explore the vertex $X_bB_{s}^{ast}pi$ and extract the strong coupling $% g_{X_bB_{s}^{ast}pi}$, which is a necessary ingredient to find the width of the $X_b to B_s^{ast}pi^{+}$ decay process. The obtained predictions are compared with the experimental data of the D0 Collaboration, and results of other theoretical works.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا