ترغب بنشر مسار تعليمي؟ اضغط هنا

Source Polarization

42   0   0.0 ( 0 )
 نشر من قبل Erdal Arikan
 تاريخ النشر 2010
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Erdal Arikan




اسأل ChatGPT حول البحث

The notion of source polarization is introduced and investigated. This complements the earlier work on channel polarization. An application to Slepian-Wolf coding is also considered. The paper is restricted to the case of binary alphabets. Extension of results to non-binary alphabets is discussed briefly.

قيم البحث

اقرأ أيضاً

We exploit the redundancy of the language-based source to help polar decoding. By judging the validity of decoded words in the decoded sequence with the help of a dictionary, the polar list decoder constantly detects erroneous paths after every few b its are decoded. This path-pruning technique based on joint decoding has advantages over stand-alone polar list decoding in that most decoding errors in early stages are corrected. In order to facilitate the joint decoding, we first propose a construction of dynamic dictionary using a trie and show an efficient way to trace the dictionary during decoding. Then we propose a joint decoding scheme of polar codes taking into account both information from the channel and the source. The proposed scheme has the same decoding complexity as the list decoding of polar codes. A list-size adaptive joint decoding is further implemented to largely reduce the decoding complexity. We conclude by simulation that the joint decoding schemes outperform stand-alone polar codes with CRC-aided successive cancellation list decoding by over 0.6 dB.
84 - Or Ordentlich , Uri Erez 2013
Integer-Forcing (IF) is a new framework, based on compute-and-forward, for decoding multiple integer linear combinations from the output of a Gaussian multiple-input multiple-output channel. This work applies the IF approach to arrive at a new low-co mplexity scheme, IF source coding, for distributed lossy compression of correlated Gaussian sources under a minimum mean squared error distortion measure. All encoders use the same nested lattice codebook. Each encoder quantizes its observation using the fine lattice as a quantizer and reduces the result modulo the coarse lattice, which plays the role of binning. Rather than directly recovering the individual quantized signals, the decoder first recovers a full-rank set of judiciously chosen integer linear combinations of the quantized signals, and then inverts it. In general, the linear combinations have smaller average powers than the original signals. This allows to increase the density of the coarse lattice, which in turn translates to smaller compression rates. We also propose and analyze a one-shot version of IF source coding, that is simple enough to potentially lead to a new design principle for analog-to-digital converters that can exploit spatial correlations between the sampled signals.
It is shown that for any binary-input discrete memoryless channel $W$ with symmetric capacity $I(W)$ and any rate $R <I(W)$, the probability of block decoding error for polar coding under successive cancellation decoding satisfies $P_e le 2^{-N^beta} $ for any $beta<frac12$ when the block-length $N$ is large enough.
Polarization-adjusted convolutional (PAC) codes were recently proposed and arouse the interest of the channel coding community because they were shown to approach theoretical bounds for the (128,64) code size. In this letter, we propose systematic PA C codes. Thanks to the systematic property, improvement in the bit-error rate of up to 0.2 dB is observed, while preserving the frame-error rate performance. Moreover, a genetic-algorithm based construction method targeted to approach the theoretical bound is provided. It is then shown that using the proposed construction method systematic and non-systematic PAC codes can approach the theoretical bound even for higher code sizes such as (256,128).
Lossy transmission over a relay channel in which the relay has access to correlated side information is considered. First, a joint source-channel decode-and-forward scheme is proposed for general discrete memoryless sources and channels. Then the Gau ssian relay channel where the source and the side information are jointly Gaussian is analyzed. For this Gaussian model, several new source-channel cooperation schemes are introduced and analyzed in terms of the squared-error distortion at the destination. A comparison of the proposed upper bounds with the cut-set lower bound is given, and it is seen that joint source-channel cooperation improves the reconstruction quality significantly. Moreover, the performance of the joint code is close to the lower bound on distortion for a wide range of source and channel parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا