ترغب بنشر مسار تعليمي؟ اضغط هنا

The FERRUM project: laboratory-measured transition probabilities for Cr II

133   0   0.0 ( 0 )
 نشر من قبل Jonas Gurell
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims: We measure transition probabilities for Cr II transitions from the z ^4H_J, z ^2D_J, y ^4F_J, and y ^4G_J levels in the energy range 63000 to 68000 cm^{-1}. Methods: Radiative lifetimes were measured using time-resolved laser-induced fluorescence from a laser-produced plasma. In addition, branching fractions were determined from intensity-calibrated spectra recorded with a UV Fourier transform spectrometer. The branching fractions and radiative lifetimes were combined to yield accurate transition probabilities and oscillator strengths. Results: We present laboratory measured transition probabilities for 145 Cr II lines and radiative lifetimes for 14 Cr II levels. The laboratory-measured transition probabilities are compared to the values from semi-empirical calculations and laboratory measurements in the literature.

قيم البحث

اقرأ أيضاً

Accurate transition probabilities for forbidden lines are important diagnostic parameters for low-density astrophysical plasmas. In this paper we present experimental atomic data for forbidden [FeII] transitions that are observed as strong features i n astrophysical spectra. Aims: To measure lifetimes for the 3d^6(^3G)4s a ^4G_{11/2} and 3d^6(^3D)4s b ^4D_{1/2} metastable levels in FeII and experimental transition probabilities for the forbidden transitions 3d^7 a ^4F_{7/2,9/2}- 3d^6(^3G)4s a ^4G_{11/2}. Methods: The lifetimes were measured at the ion storage ring facility CRYRING using a laser probing technique. Astrophysical branching fractions were obtained from spectra of Eta Carinae, obtained with the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope. The lifetimes and branching fractions were combined to yield absolute transition probabilities. Results: The lifetimes of the a ^4G_{11/2} and the b ^4D_{1/2} levels have been measured and have the following values, 0.75(10) s and 0.54(3) s respectively. Furthermore, we have determined the transition probabilities for two forbidden transitions of a ^4F_{7/2,9/2}- a ^4G_{11/2} at 4243.97 and 4346.85 A. Both the lifetimes and the transition probabilities are compared to calculated values in the literature.
66 - H. Hartman 2008
Context. In many plasmas, long-lived metastable atomic levels are depopulated by collisions (quenched) before they decay radiatively. In low-density regions, however, the low collision rate may allow depopulation by electric dipole (E1) forbidden rad iative transitions, so-called forbidden lines (mainly M1 and E2 transitions). If the atomic transition data are known, these lines are indicators of physical plasma conditions and used for abundance determination. Aims. Transition rates can be derived by combining relative intensities between the decay channels, so-called branching fractions (BFs), and the radiative lifetime of the common upper level. We use this approach for forbidden [Sc ii] lines, along with new calculations. Methods. Neither BFs for forbidden lines, nor lifetimes of metastable levels, are easily measured in a laboratory. Therefore, astrophysical BFs measured in Space Telescope Imaging Spectrograph (STIS) spectra of the strontium filament of Eta Carinae are combined with lifetime measurements using a laser probing technique on a stored ion-beam (CRYRING facility,MSL, Stockholm). These quantities are used to derive the absolute transition rates (A-values). New theoretical transition rates and lifetimes are calulated using the CIV3 code. Results. We report experimental lifetimes of the Sc ii levels 3d2 a3P0,1,2 with lifetimes 1.28, 1.42, and 1.24 s, respectively, and transition rates for lines from these levels down to 3d4s a3D in the region 8270-8390 A. These are the most important forbidden [Sc ii] transitions. New calculations for lines and metastable lifetimes are also presented, and are in good agreement with the experimental data.
Recent radiative lifetime measurements accurate to +/- 5% using laser-induced fluorescence (LIF) on 43 even-parity and 15 odd-parity levels of Ce II have been combined with new branching fractions measured using a Fourier transform spectrometer (FTS) to determine transition probabilities for 921 lines of Ce II. This improved laboratory data set has been used to determine a new solar photospheric Ce abundance, log epsilon = 1.61 +/- 0.01 (sigma = 0.06 from 45 lines), a value in excellent agreement with the recommended meteoritic abundance, log epsilon = 1.61 +/- 0.02. Revised Ce abundances have also been derived for the r-process-rich metal-poor giant stars BD+17 3248, CS 22892-052, CS 31082-001, HD 115444 and HD 221170. Between 26 and 40 lines were used for determining the Ce abundance in these five stars, yielding a small statistical uncertainty of 0.01 dex similar to the Solar result. The relative abundances in the metal-poor stars of Ce and Eu, a nearly pure r-process element in the Sun, matches r-process only model predictions for Solar System material. This consistent match with small scatter over a wide range of stellar metallicities lends support to these predictions of elemental fractions. A companion paper includes an interpretation of these new precision abundance results for Ce as well as new abundance results and interpretations for Pr, Dy and Tm.
The goals of this study are 1) to test the best theoretical transition probabilities for Ca I (a relatively light alkaline earth spectrum) from a modern ab initio calculation using configuration interaction plus many body perturbation theory against the best modern experimental transition probabilities, and 2) to produce as accurate and comprehensive a line list of Ca I transition probabilities as is currently possible based on this comparison. We report new Ca I radiative lifetime measurements from a laser-induced fluorescence (LIF) experiment and new emission branching fraction measurements from a 0.5 m focal length grating spectrometer with a detector array. We combine these data for upper levels that have both a new lifetime and new branching fractions to report log(gf)s for two multiplets consisting of nine transitions. Detailed comparisons are made between theory and experiment, including the measurements reported herein and a selected set of previously published experimental transition probabilities. We find that modern theory compares favorably to experimental measurements in most instances where such data exist. A final list of 202 recommended transition probabilities is presented, which covers lines of Ca I with wavelengths ranging from 2200 - 10,000 Angstroms. These are mostly selected from theory, but are augmented with high quality experimental measurements from this work and from the literature. The recommended transition probabilities are used in a redetermination of the Ca abundance in the Sun and in the metal-poor star HD 84937.
Recent radiative lifetime measurements accurate to +/- 5% (Stockett et al. 2007, J. Phys. B 40, 4529) using laser-induced fluorescence (LIF) on 8 even-parity and 62 odd-parity levels of Er II have been combined with new branching fractions measured u sing a Fourier transform spectrometer (FTS) to determine transition probabilities for 418 lines of Er II. This work moves Er II onto the growing list of rare earth spectra with extensive and accurate modern transition probability measurements using LIF plus FTS data. This improved laboratory data set has been used to determine a new solar photospheric Er abundance, log epsilon = 0.96 +/- 0.03 (sigma = 0.06 from 8 lines), a value in excellent agreement with the recommended meteoric abundance, log epsilon = 0.95 +/- 0.03. Revised Er abundances have also been derived for the r-process-rich metal-poor giant stars CS 22892-052, BD+17 3248, HD 221170, HD 115444, and CS 31082-001. For these five stars the average Er/Eu abundance ratio, <log epsilon (Er/Eu)> = 0.42, is in very good agreement with the solar-system r-process ratio. This study has further strengthened the finding that r-process nucleosynthesis in the early Galaxy which enriched these metal-poor stars yielded a very similar pattern to the r-process which enriched later stars including the Sun.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا