ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy-Dependent Harmonic Ratios of the Cyclotron Features of X0331+53 in the 2004-2005 Outburst

182   0   0.0 ( 0 )
 نشر من قبل Motoki Nakajima
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Motoki. Nakajima




اسأل ChatGPT حول البحث

We report on changes of the cyclotron resonance energies of the recurrent transient pulsar, X0331+53 (V0332+53). The whole RXTE data acquired in the 2004-2005 outburst were utilized. The 3-80 keV source luminosity varied between 1.7x10^36 and 3.5x10^38 ers/s, assuming a distance of 7 kpc. We confirmed that the fundamental cyclotron resonance energy changed from ~22 to ~27 keV in a clear anti-correlation to the source luminosity, and without any hysteresis effects between the rising and declining phases of the outburst. In contrast, the second harmonic energy changed from ~49 to ~54 keV, implying a weaker fractional change as a function of the luminosity. As a result, the observed resonance energy ratio between the second harmonic and the fundamental was ~2.2 when the source was most luminous, whereas the ratio decreased to the nominal value of 2.0 at the least luminous state. Although the significance of this effect is model dependent, these results suggest that the fundamental and second harmonic resonances represent different heights in the accretion column, depending on the mass accretion rate.



قيم البحث

اقرأ أيضاً

120 - S. Tsygankov 2009
Analysis of the data obtained with the RXTE observatory during a powerful outburst of the X-ray pulsar V0332+53 in 2004-2005 is presented. Observational data covering the outburst brightening phase are analysed in detail for the first time. A compari son of source parameters and their evolution during the brightening and fading phases shows no evidence for any hysteresis behaviour. It is found that the dependences of the energy of the cyclotron absorption line on the luminosity during the brightening and fading phases are almost identical. The complete data sequence including the outburst brightening and fading phases makes it possible to impose the more stringent constraints on the magnetic field in the source. The pulse profile and pulsed fraction are studied as functions of the luminosity and photon energy.
We present results of observations of the transient X-ray pulsar V0332+53 performed during a very powerful outburst in Dec, 2004 -- Feb, 2005 with the INTEGRAL and RXTE observatories in a wide (3-100 keV) energy band. A cyclotron resonance scattering line at an energy of ~26 keV has been detected in the source spectrum together with its two higher harmonics at ~50 and ~73 keV, respectively. We show that the energy of the line is not constant but linearly changes with the source luminosity. Strong pulse profile variations, especially near the cyclotron line, are revealed for different levels of the source intensity. We discuss the obtained results in terms of the theoretical models of X-ray pulsars.
89 - K. Pottschmidt 2005
We present an analysis of the 2-150 keV spectrum of the transient X-ray pulsar V0332+53 taken with the Rossi X-Ray Timing Explorer (RXTE) in 2004 December. We report on the detection of three cyclotron resonance features at 27, 51, and 74 keV in the phase-averaged data, corresponding to a polar magnetic field of 2.7 x 10^12 G. After 4U0115+63, this makes V0332+53 the second accreting neutron star in which more than two cyclotron lines have been detected; this has now also been confirmed by INTEGRAL. Pulse-phase spectroscopy reveals remarkably little variability of the cyclotron line through the 4.4 s X-ray pulse.
The radio quasar 3C 454.3 underwent an exceptional optical outburst lasting more than 1 year and culminating in spring 2005. The maximum brightness detected was R = 12.0, which represents the most luminous quasar state thus far observed (M_B ~ -31.4) . In order to follow the emission behaviour of the source in detail, a large multiwavelength campaign was organized by the Whole Earth Blazar Telescope (WEBT). Continuous optical, near-IR and radio monitoring was performed in several bands. ToO pointings by the Chandra and INTEGRAL satellites provided additional information at high energies in May 2005. The historical radio and optical light curves show different behaviours. Until about 2001.0 only moderate variability was present in the optical regime, while prominent and long-lasting radio outbursts were visible at the various radio frequencies, with higher-frequency variations preceding the lower-frequency ones. After that date, the optical activity increased and the radio flux is less variable. This suggests that the optical and radio emissions come from two separate and misaligned jet regions, with the inner optical one acquiring a smaller viewing angle during the 2004-2005 outburst. Moreover, the colour-index behaviour (generally redder-when-brighter) during the outburst suggests the presence of a luminous accretion disc. A huge mm outburst followed the optical one, peaking in June-July 2005. The high-frequency (37-43 GHz) radio flux started to increase in early 2005 and reached a maximum at the end of our observing period (end of September 2005). VLBA observations at 43 GHz during the summer confirm the
We studied the harmonics of the millihertz quasi-periodic oscillations (mHz QPOs) in the neutron-star low-mass X-ray binary 4U 1636-53 using the Rossi X-ray Timing Explorer observations. We detected the harmonics of the mHz QPOs in 73 data intervals, with most of them in the transitional spectra state. We found that the ratio between the rms amplitude of the harmonic and that of the fundamental remains constant in a wide range of the fundamental frequency. More importantly, we studied, for the first time, the rms amplitude of the harmonics vs. energy in 4U 1636-53 in the 2-5 keV range. We found that the rms amplitude of both the harmonic and the fundamental shows a decreasing trend as the energy increases, which is different from the behaviors reported in QPOs in certain black hole systems. Furthermore, our results suggest that not all observations with mHz QPOs have the harmonic component, although the reason behind this is still unclear.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا