ﻻ يوجد ملخص باللغة العربية
In this work we study the Nambu-Jona-Lasinio model in the SU (2) version with repulsive vector coupling and apply it to quark stellar matter. We discuss the influence of the vector interaction on the equation of state (EoS) and study quark stars that are composed of pure quark matter with two flavors. We show that, increasing the vector coupling, we obtain more massive stars with larger radii for the same central energy density.
The formalism of Riemannian geometry is applied to study the phase transitions in Nambu -Jona Lasinio (NJL) model. Thermodynamic geometry reliably describes the phase diagram, both in the chiral limit and for finite quark masses. The comparison betwe
The critical phenomena in strongly interaction matter are generally investigated using the mean-field model and are characterized by well defined critical exponents. However, such models provide only average properties of the corresponding order para
We present a revisited version of the nonextensive QCD-based Nambu - Jona-Lasinio (NJL) model describing the behavior of strongly interacting matter proposed by us some time ago. As before, it is based on the nonextensive generalization of the Boltzm
We explore the physical consequences of a scenario when the standard Hermitian Nambu--Jona-Lasinio (NJL) model spontaneously develops a non-Hermitian PT-symmetric ground state via dynamical generation of an anti-Hermitian Yukawa coupling. We demonstr
Using the Nambu-Jona-Lasinio model to describe the nucleon as a quark-diquark state, we discuss the stability of nuclear matter in a hybrid model for the ground state at finite nucleon density. It is shown that a simple extension of the model to simu