ترغب بنشر مسار تعليمي؟ اضغط هنا

Power law behavior for the zigzag transition in a Yukawa cluster

48   0   0.0 ( 0 )
 نشر من قبل Terrence Sheridan
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide direct experimental evidence that the one-dimensional (1D) to two-dimensional (2D) zigzag transition in a Yukawa cluster exhibits power law behavior. Configurations of a six-particle dusty (complex) plasma confined in a biharmonic potential well are characterized as the well anisotropy is reduced. When the anisotropy is large the particles are in a 1D straight line configuration. As the anisotropy is decreased the cluster undergoes a zigzag transition to a 2D configuration. The measured dependence of cluster width on anisotropy is well described by a power law. A second transition from the zigzag to an elliptical configuration is also observed. The results are in very good agreement with a model for particles interacting through a Yukawa potential.

قيم البحث

اقرأ أيضاً

274 - Akira Sakai 2018
This is a short review of the two papers on the $x$-space asymptotics of the critical two-point function $G_{p_c}(x)$ for the long-range models of self-avoiding walk, percolation and the Ising model on $mathbb{Z}^d$, defined by the translation-invari ant power-law step-distribution/coupling $D(x)propto|x|^{-d-alpha}$ for some $alpha>0$. Let $S_1(x)$ be the random-walk Green function generated by $D$. We have shown that $bullet~~S_1(x)$ changes its asymptotic behavior from Newton ($alpha>2$) to Riesz ($alpha<2$), with log correction at $alpha=2$; $bullet~~G_{p_c}(x)simfrac{A}{p_c}S_1(x)$ as $|x|toinfty$ in dimensions higher than (or equal to, if $alpha=2$) the upper critical dimension $d_c$ (with sufficiently large spread-out parameter $L$). The model-dependent $A$ and $d_c$ exhibit crossover at $alpha=2$. The keys to the proof are (i) detailed analysis on the underlying random walk to derive sharp asymptotics of $S_1$, (ii) bounds on convolutions of power functions (with log corrections, if $alpha=2$) to optimally control the lace-expansion coefficients $pi_p^{(n)}$, and (iii) probabilistic interpretation (valid only when $alphale2$) of the convolution of $D$ and a function $varPi_p$ of the alternating series $sum_{n=0}^infty(-1)^npi_p^{(n)}$. We outline the proof, emphasizing the above key elements for percolation in particular.
We show that Brownian motion of a one-dimensional domain wall in a large but finite system yields a $omega^{-3/2}$ power spectrum. This is successfully applied to the totally asymmetric simple exclusion process (TASEP) with open boundaries. An excell ent agreement between our theory and numerical results is obtained in a frequency range where the domain wall motion dominates and discreteness of the system is not effective.
100 - Yue Wang , Jiulin Du 2020
We study the collision frequencies of particles in the weakly and highly ionized plasmas with the power-law q-distributions in nonextensive statistics. We derive the average collision frequencies of neutral-neutral particle, electron-neutral particle , ion-neutral particle, electron-electron, ion-ion and electron-ion, respectively, in the q-distributed plasmas. We show that the average collision frequencies depend strongly on the q-parameter in a complex form and thus their properties are significantly different from that in Maxwell-distributed plasmas. These new average collision frequencies are important for us to study accurately the transport property in the complex plasmas with non-Maxwell/power-law velocity distributions.
Based on the rate of expansion of the solar wind, the plasma should cool rapidly as a function of distance to the Sun. Observations show this is not the case. In this work, a magnetic pumping model is developed as a possible explanation for the heati ng and the generation of power-law distribution functions observed in the solar wind plasma. Most previous studies in this area focus on the role that the dissipation of turbulent energy on microscopic kinetic scales plays in the overall heating of the plasma. However, with magnetic pumping particles are energized by the largest scale turbulent fluctuations, thus bypassing the energy cascade. In contrast to other models, we include the pressure anisotropy term, providing a channel for the large scale fluctuations to heat the plasma directly. In this work a complete set of coupled differential equations describing the evolution, and energization, of the distribution function are derived, as well as an approximate closed form solution. Numerical simulations using the VPIC kinetic code are applied to verify the models analytical predictions. The results of the model for realistic solar wind scenario are computed, where thermal streaming of particles are important for generating a phase shift between the magnetic perturbations and the pressure anisotropy. In turn, averaged over a pump cycle, the phase shift permits mechanical work to be converted directly to heat in the plasma. The results of this scenario show that magnetic pumping may account for a significant portion of the solar wind energization.
128 - Liyan Liu , Jiulin Du 2008
We investigate the dispersion relation and Landau damping of ion acoustic waves in the collisionless magnetic-field-free plasma if it is described by the nonextensive q-distributions of Tsallis statistics. We show that the increased numbers of supert hermal particles and low velocity particles can explain the strengthened and weakened modes of Landau damping, respectively, with the q-distribution. When the ion temperature is equal to the electron temperature, the weakly damped waves are found to be the distributions with small values of q.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا