ﻻ يوجد ملخص باللغة العربية
The multiple scattering of photons in a hot, resonant, atomic vapor is investigated and shown to exhibit a Levy Flight-like behavior. Monte Carlo simulations give insights into the frequency redistribution process that originates the long steps characteristic of this class of random walk phenomena.
In a numerical investigation, we demonstrate the existence and curious evolution of vortices in a ladder-type three-level nonlinear atomic vapor with linear, cubic, and quintic susceptibilities considered simultaneously with the dressing effect. We f
We investigate multiple scattering of near-resonant light in a Doppler-broadened atomic vapor. We experimentally characterize the length distribution of the steps between successive scattering events. The obtained power law is characteristic of a sup
We experimentally investigated the characteristics of two-photon transmission resonances in Rb vapor cells with different amount of buffer gas under the conditions of steady-state coherent population trapping (CPT) and pulsed Raman-Ramsey (RR-) CPT i
Characteristics of a diffusion-bonded sapphire cell for optical experiments with hot metal vapors were investigated. The sapphire cell consisted of sapphire-crystal plates and a borosilicate-glass tube, which were bonded to each other by diffusion bo
We report on an experimental test of the spin selection rule for two-photon transitions in atoms. In particular, we demonstrate that the $5S_{1/2}to 6S_{1/2}$ transition rate in a rubidium gas follows a quadratic dependency on the helicity parameter