ﻻ يوجد ملخص باللغة العربية
Vehicular Ad Hoc Networks (VANETs) are a peculiar subclass of mobile ad hoc networks that raise a number of technical challenges, notably from the point of view of their mobility models. In this paper, we provide a thorough analysis of the connectivity of such networks by leveraging on well-known results of percolation theory. By means of simulations, we study the influence of a number of parameters, including vehicle density, proportion of equipped vehicles, and radio communication range. We also study the influence of traffic lights and roadside units. Our results provide insights on the behavior of connectivity. We believe this paper to be a valuable framework to assess the feasibility and performance of future applications relying on vehicular connectivity in urban scenarios.
The vehicular ad-hoc network (VANET) based on dedicated short-range communication (DSRC) is a distributed communication system, in which all the nodes share the wireless channel with carrier sense multiple access/collision avoid (CSMA/CA) protocol. H
The growing use of aerial user equipments (UEs) in various applications requires ubiquitous and reliable connectivity for safe control and data exchange between these devices and ground stations. Key questions that need to be addressed when planning
Vehicle-to-everything (V2X) communication in the vehicular ad hoc network (VANET), an infrastructure-free mechanism, has emerged as a crucial component in the advanced Intelligent Transport System (ITS) for special information transmission and inter-
In this paper, a framework is presented for node distribution with respect to density, network connectivity and communication time. According to modeled framework we evaluate and compare the performance of three routing protocols; Ad-hoc On-demand Di
After 50 years, the Internet is still defined as a collection of interconnected networks. Yet desires of countries for their own internet (Internet secession?), country-level firewalling, and persistent peering disputes all challenge the idea of a si