ﻻ يوجد ملخص باللغة العربية
The aim of this short article is to convey the basic idea of the original paper [3], without going into too much detail, about how to derive sharp asymptotics of the gyration radius for random walk, self-avoiding walk and oriented percolation above the model-dependent upper critical dimension.
We consider random walk and self-avoiding walk whose 1-step distribution is given by $D$, and oriented percolation whose bond-occupation probability is proportional to $D$. Suppose that $D(x)$ decays as $|x|^{-d-alpha}$ with $alpha>0$. For random wal
We apply the method of nonlinear steepest descent to compute the long-time asymptotics of the Toda lattice for decaying initial data in the soliton region. In addition, we point out how to reduce the problem in the remaining region to the known case without solitons.
The long-time asymptotic behavior is studied for a long-range variant of the Emch-Radin model of interacting spins. We derive upper and lower bounds on the expectation values of a class of observables. We prove analytically that the time scale at whi
The purpose of this article is to give a streamlined and self-contained treatment of the long-time asymptotics of the Toda lattice for decaying initial data in the soliton and in the similarity region via the method of nonlinear steepest descent.
We derive the long-time asymptotics for the Toda shock problem using the nonlinear steepest descent analysis for oscillatory Riemann--Hilbert factorization problems. We show that the half plane of space/time variables splits into five main regions: T