ترغب بنشر مسار تعليمي؟ اضغط هنا

Remarkable Spectral Variability of PDS 456

217   0   0.0 ( 0 )
 نشر من قبل Ehud Behar
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the highest to date signal-to-noise-ratio X-ray spectrum of the luminous quasar PDS 456, as obtained during two XMM-Newton orbits in September 2007. The present spectrum is considerably different from several previous X-ray spectra recorded for PDS 456 since 1998. The ultra-high-velocity outflow seen as recently as February 2007 is not detected in absorption. Conversely, a significant reflection component is detected. The reflection model suggests the reflecting medium may be outflowing at a velocity v/c = -0.06 +/- 0.02. The present spectrum is analyzed in the context of the previous ones in an attempt to understand all spectra within the framework of a single model. We examine whether an outflow with variable partial covering of the X-ray source along the line of sight that also reflects the source from other lines of sight can explain the dramatic variations in the broad-band spectral curvature of PDS 456. It is established that absorption plays a major role in shaping the spectrum of other epochs, while the 2007 XMM-Newton spectrum is dominated by reflection, and the coverage of the source by the putative outflow is small (< 20%).



قيم البحث

اقرأ أيضاً

We present a detailed analysis of a recent $500$ ks net exposure textit{Suzaku} observation, carried out in 2013, of the nearby ($z=0.184$) luminous (L$_{rm bol}sim10^{47}$ erg s$^{-1}$) quasar PDS 456 in which the X-ray flux was unusually low. The s hort term X-ray spectral variability has been interpreted in terms of variable absorption and/or intrinsic continuum changes. In the former scenario, the spectral variability is due to variable covering factors of two regions of partially covering absorbers. We find that these absorbers are characterised by an outflow velocity comparable to that of the highly ionised wind, i.e. $sim0.25$ c, at the $99.9%$ $(3.26sigma)$ confidence level. This suggests that the partially absorbing clouds may be the denser clumpy part of the inhomogeneous wind. Following an obscuration event we obtained a direct estimate of the size of the X-ray emitting region, to be not larger than $20~R_{rm g}$ in PDS 456.
We present a newly discovered correlation between the wind outflow velocity and the X-ray luminosity in the luminous ($L_{rm bol}sim10^{47},rm erg,s^{-1}$) nearby ($z=0.184$) quasar PDS,456. All the contemporary XMM-Newton, NuSTAR and Suzaku observat ions from 2001--2014 were revisited and we find that the centroid energy of the blueshifted Fe,K absorption profile increases with luminosity. This translates into a correlation between the wind outflow velocity and the hard X-ray luminosity (between 7--30,keV) where we find that $v_{rm w}/c propto L_{7-30}^{gamma}$ where $gamma=0.22pm0.04$. We also show that this is consistent with a wind that is predominately radiatively driven, possibly resulting from the high Eddington ratio of PDS,456.
New Swift monitoring observations of the variable, radio-quiet quasar, PDS 456, are presented. A bright X-ray flare was captured in September 2018, the flux increasing by a factor of 4 and with a doubling time-scale of 2 days. From the light crossing argument, the coronal size is inferred to be about 30 gravitational radii for a black hole mass of $10^{9} {rm M}_{odot}$ and the total flare energy exceeds $10^{51}$ erg. A hardening of the X-ray emission accompanied the flare, with the photon index decreasing from $Gamma=2.2$ to $Gamma=1.7$ and back again. The flare is produced in the X-ray corona, the lack of any optical or UV variability being consistent with a constant accretion rate. Simultaneous XMM-Newton and NuSTAR observations were performed, $1-3$ days after the flare peak and during the decline phase. These caught PDS 456 in a bright, bare state, where no disc wind absorption features are apparent. The hard X-ray spectrum shows a high energy roll-over, with an e-folding energy of $E_{rm fold}=51^{+11}_{-8}$ keV. The deduced coronal temperature, of $kT=13$ keV, is one of the coolest measured in any AGN and PDS 456 lies well below the predicted pair annihilation line in X-ray corona. The spectral variability, becoming softer when fainter following the flare, is consistent with models of cooling X-ray coronae. Alternatively, an increase in a non-thermal component could contribute towards the hard X-ray flare spectrum.
Past X-ray observations of the nearby luminous quasar PDS 456 (at $z=0.184$) have revealed a wide angle accretion disk wind (Nardini et al. 2015), with an outflow velocity of $sim-0.25c$. Here we unveil a new, relativistic component of the wind throu gh hard X-ray observations with NuSTAR and XMM-Newton, obtained in March 2017 when the quasar was in a low flux state. This very fast wind component, with an outflow velocity of $-0.46pm0.02c$, is detected in the iron K band, in addition to the $-0.25c$ wind zone. The relativistic component may arise from the innermost disk wind, launched from close to the black hole at radius of $sim10$ gravitational radii. The opacity of the fast wind also increases during a possible obscuration event lasting for 50 ks. We suggest that the very fast wind may only be apparent during the lowest X-ray flux states of PDS 456, becoming overly ionized as the luminosity increases. Overall, the total wind power may even approach the Eddington value.
PDS 456 is a nearby (z=0.184), luminous (L_bol ~10^47 erg/s) type I quasar. A deep 190 ks Suzaku observation in February 2007 revealed the complex, broad band X-ray spectrum of PDS 456. The Suzaku spectrum exhibits highly statistically significant ab sorption features near 9 keV in the quasar rest--frame. We show that the most plausible origin of the absorption is from blue-shifted resonance (1s-2p) transitions of hydrogen-like iron (at 6.97 keV in the rest frame). This indicates that a highly ionized outflow may be present moving at near relativistic velocities (~0.25c). A possible hard X-ray excess is detected above 15 keV with HXD (at 99.8% confidence), which may arise from high column density gas (Nh>10^24cm^-2) partially covering the X-ray emission, or through strong Compton reflection. Here we propose that the iron K-shell absorption in PDS 456 is associated with a thick, possibly clumpy outflow, covering about 20% of $4pi$ steradian solid angle. The outflow is likely launched from the inner accretion disk, within 15-100 gravitational radii of the black hole. The kinetic power of the outflow may be similar to the bolometric luminosity of PDS 456. Such a powerful wind could have a significant effect on the co-evolution of the host galaxy and its supermassive black hole, through feedback.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا