ترغب بنشر مسار تعليمي؟ اضغط هنا

Parallel electron-hole bilayer conductivity from electronic interface reconstruction

49   0   0.0 ( 0 )
 نشر من قبل Katrin Otte
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The perovskite SrTiO$_3$-LaAlO$_3$ structure has advanced to a model system to investigate the rich electronic phenomena arising at polar interfaces. Using first principles calculations and transport measurements we demonstrate that an additional SrTiO$_3$ capping layer prevents structural and chemical reconstruction at the LaAlO$_3$ surface and triggers the electronic reconstruction at a significantly lower LaAlO$_3$ film thickness than for the uncapped systems. Combined theoretical and experimental evidence (from magnetotransport and ultraviolet photoelectron spectroscopy) suggests two spatially separated sheets with electron and hole carriers, that are as close as 1 nm.

قيم البحث

اقرأ أيضاً

Control of the interlayer twist angle in two-dimensional (2D) van der Waals (vdW) heterostructures enables one to engineer a quasiperiodic moire superlattice of tunable length scale. In twisted bilayer graphene (TBG), the simple moire superlattice ba nd description suggests that the electronic band width can be tuned to be comparable to the vdW interlayer interaction at a magic angle, exhibiting strongly correlated behavior. However, the vdW interlayer interaction can also cause significant structural reconstruction at the interface by favoring interlayer commensurability, which competes with the intralayer lattice distortion. Here we report the atomic scale reconstruction in TBG and its effect on the electronic structure. We find a gradual transition from incommensurate moire structure to an array of commensurate domain structures as we decrease the twist angle across the characteristic crossover angle, $theta_c$ ~1deg. In the twist regime smaller than $theta_c$ where the atomic and electronic reconstruction become significant, a simple moire band description breaks down. Upon applying a transverse electric field, we observe electronic transport along the network of one-dimensional (1D) topological channels that surround the alternating triangular gapped domains, providing a new pathway to engineer the system with continuous tunability.
274 - Jinwu Ye , T. Shi , Longhua Jiang 2009
Superfluid has been realized in Helium-4, Helium-3 and ultra-cold atoms. It has been widely used in making high-precision devices and also in cooling various systems. There have been extensive experimental search for possible exciton superfluid (ESF) in semiconductor electron-hole bilayer (EHBL) systems below liquid Helium temperature. However, exciton superfluid are meta-stable and will eventually decay through emitting photons. Here we study quantum nature of photons emitted from the excitonic superfluid (ESF) phase in the semiconductor EHBL and find that the light emitted from the excitonic superfluid has unique and unusual features not shared by any other atomic or condensed matter systems. We show that the emitted photons along the direction perpendicular to the layer are in a coherent state, those along all tilted directions are in a two modes squeezed state. We determine the two mode squeezing spectra, the angle resolved power spectrum, the line shapes of both the momentum distribution curve (MDC) and the energy distribution curve (EDC). From the two photon correlation functions, we find there are photon bunching, the photo-count statistics is super-Poissonian. We discuss how several important parameters such as the chemical potential, the exciton decay rate, the quasiparticle energy spectrum and the dipole-dipole interaction strength between the excitons in our theory can be extracted from the experimental data and comment on available experimental data on both EDC and MDC.
When insulator LaAlO3 is grown by epitaxy onto a TiO2-terminated {100} surface of insulator SrTiO3, the resulting system has a metallic character. This phenomenon has been associated with an electrostatic frustration at the interface, as {100} surfac es of SrTiO3 are neutral while those of LaAlO3 are polar, but its microscopic mechanism is not quite understood. Here, we present a structural characterisation of this interface by aberration-corrected transmission electron microscopy. The unit cells at the interface appear elongated: we discuss this distortion in terms of electrostatic charge and extra carriers at the interface.
133 - M. Salluzzo 2014
The conducting quasi-two dimensional electron system (q2DES) formed at the interface between LaAlO3 and SrTiO3 band insulators is confronting the condensed matter physics community with new paradigms. While the mechanism for the formation of the q2DE S is debated, new conducting interfaces have been discovered paving the way to possible applications in electronics, spintronics and optoelectronics. This chapter is an overview of the research on the LAO/STO sys-tem, presenting some of the most important results obtained in the last decade to clarify the mechanism of formation of the q2DES at the oxide interfaces and its peculiar electronic properties as compared to semiconducting 2D-electron gas.
Conventional two-dimensional electron gases are realized by engineering the interfaces between semiconducting compounds. In 2004, Ohtomo and Hwang discovered that an electron gas can be also realized at the interface between large gap insulators made of transition metal oxides [1]. This finding has generated considerable efforts to clarify the underlying microscopic mechanism. Of particular interest is the LaAlO3/SrTiO3 system, because it features especially striking properties. High carrier mobility [1], electric field tuneable superconductivity [2] and magnetic effects [3], have been found. Here we show that an orbital reconstruction is underlying the generation of the electron gas at the LaAlO3/SrTiO3 n-type interface. Our results are based on extensive investigations of the electronic properties and of the orbital structure of the interface using X-ray Absorption Spectroscopy. In particular we find that the degeneracy of the Ti 3d states is fully removed, and that the Ti 3dxy levels become the first available states for conducting electrons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا