ترغب بنشر مسار تعليمي؟ اضغط هنا

Differential cross section and recoil polarization measurements for the gamma p to K+ Lambda reaction using CLAS at Jefferson Lab

83   0   0.0 ( 0 )
 نشر من قبل Curtis Meyer
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present measurements of the differential cross section and Lambda recoil polarization for the gamma p to K+ Lambda reaction made using the CLAS detector at Jefferson Lab. These measurements cover the center-of-mass energy range from 1.62 to 2.84 GeV and a wide range of center-of-mass K+ production angles. Independent analyses were performed using the K+ p pi- and K+ p (missing pi -) final-state topologies; results from these analyses were found to exhibit good agreement. These differential cross section measurements show excellent agreement with previous CLAS and LEPS results and offer increased precision and a 300 MeV increase in energy coverage. The recoil polarization data agree well with previous results and offer a large increase in precision and a 500 MeV extension in energy range. The increased center-of-mass energy range that these data represent will allow for independent study of non-resonant K+ Lambda photoproduction mechanisms at all production angles.

قيم البحث

اقرأ أيضاً

The reaction $gamma p rightarrow K^{+} Lambda(1520)$ using photoproduction data from the CLAS $g12$ experiment at Jefferson Lab is studied. The decay of $Lambda(1520)$ into two exclusive channels, $Sigma^{+}pi^{-}$ and $Sigma^{-}pi^{+}$, is studied f rom the detected $K^{+}$, $pi^{+}$, and $pi^{-}$ particles. A good agreement is established for the $Lambda(1520)$ differential cross sections with the previous CLAS measurements. The differential cross sections as a function of CM angle are extended to higher photon energies. Newly added are the differential cross sections as a function of invariant 4-momentum transfer $t$, which is the natural variable to use for a theoretical model based on a Regge-exchange reaction mechanism. No new $N^*$ resonances decaying into the $K^+Lambda(1520)$ final state are found.
The double polarization (beam-recoil) observables Ox and Oz have been measured for the reaction gamma p -> K Lambda from threshold production to Egamma = 1500 MeV. The data were obtained with the linearly polarized beam of the GRAAL facility. Values for the target asymmetry T could also be extracted despite the use of an unpolarized target. Analyses of our results by two isobar models tend to confirm the necessity to include new or poorly known resonances in the 1900 MeV mass region.
138 - W. Chen , T. Mibe , D. Dutta 2009
We report a measurement of the differential cross section for the $gamma n to pi^- p$ process from the CLAS detector at Jefferson Lab in Hall B for photon energies between 1.0 and 3.5 GeV and pion center-of-mass (c.m.) angles ($theta_{c.m.}$) between 50$^circ$ and 115$^circ$. We confirm a previous indication of a broad enhancement around a c.m. energy ($sqrt{s}$) of 2.2 GeV at $theta_{c.m.}=90^circ$ in the scaled differential cross section, $s^7 {frac{dsigma}{dt}}$. Our data show the angular dependence of this enhancement as the scaling region is approached in the kinematic region from 70$^circ$ to 105$^circ$.
The quasi-free $gamma dtopi^{-}p(p)$ differential cross section has been measured with CLAS at photon beam energies $E_gamma$ from 0.445 GeV to 2.510 GeV (corresponding to $W$ from 1.311 GeV to 2.366 GeV) for pion center-of-mass angles $costheta_pi^{ c.m.}$ from -0.72 to 0.92. A correction for final state interactions has been applied to this data to extract the $gamma ntopi^-p$ differential cross sections. These cross sections are quoted in 8428 $(E_gamma,costheta_pi^{c.m.})$ bins, a factor of nearly three increase in the world statistics for this channel in this kinematic range. These new data help to constrain coupled-channel analysis fits used to disentangle the spectrum of $N^*$ resonances and extract their properties. Selected photon decay amplitudes $N^* to gamma n$ at the resonance poles are determined for the first time and are reported here.
The interpretation of the most recent solar neutrinos experiments requires a good knowledge of the cross section of the reaction 7Be(p,gamma)8B at very small energy (Ecm=18 keV). We have recently measured this cross section for Ecm=0.35-1.4 MeV and f or Ecm=0.112-0.190 MeV. We report here on the description of the preparation of the radioactive targets of 7Be used in these experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا