ترغب بنشر مسار تعليمي؟ اضغط هنا

The effect of annealing on the RHESSI gamma-ray detectors

123   0   0.0 ( 0 )
 نشر من قبل P\\'eter Veres
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The performance of nine RHESSI germanium detectors has been gradually deteriorating since its launch in 2002 because of radiation damage caused by passing through the Earths radiation belts. To restore its former sensitivity, the spectrometer underwent an annealing procedure in November 2007. It, however, changed the RHESSI response and affected gamma-ray burst measurements, e.g., the hardness ratios and the spectral capabilities bellow approximately 100 keV.



قيم البحث

اقرأ أيضاً

278 - L. Amati 2013
Gamma-Ray Bursts (GRBs) are the most powerful cosmic explosions since the Big Bang, and thus act as signposts throughout the distant Universe. Over the last 2 decades, these ultra-luminous cosmological explosions have been transformed from a mere cur iosity to essential tools for the study of high-redshift stars and galaxies, early structure formation and the evolution of chemical elements. In the future, GRBs will likely provide a powerful probe of the epoch of reionisation of the Universe, constrain the properties of the first generation of stars, and play an important role in the revolution of multi-messenger astronomy by associating neutrinos or gravitational wave (GW) signals with GRBs. Here, we describe the next steps needed to advance the GRB field, as well as the potential of GRBs for studying the Early Universe and their role in the up-coming multi-messenger revolution.
108 - J. Ripa , P. Veres , C. Wigger 2010
The performance of the nine RHESSI germanium detectors has been gradually deteriorating since its launch in 2002 because of radiation damage. To restore its former sensitivity, the spectrometer underwent an annealing procedure in November 2007. Howev er, it changed the RHESSI response and affected gamma-ray burst measurements, e.g., the hardness ratios and the spectral capabilities below ~100keV.
121 - Myungshin Im 2012
We review Gamma-Ray Burst (GRB) afterglow follow-up observations being carried out by our group in Korea. We have been performing GRB follow-up observations using the 4-m UKIRT in Hawaii, the 2.1-m telescope at the McDonald observatory in Texas, the 1.5-m telescope at Maidanak observatory in Uzbekistan, the 1.8-m telescope Mt. Bohyun Optical Astronomy Observatory (BOAO) in Korea, and the 1.0-m remotely operated telescope in Mt. Lemmon, Arizona. We outline our facilities, and present highlights of our work, including the studies of high redshift GRBs at z > 5, and several other interesting bursts.
Short Gamma-Ray Bursts (SGRBs) are expected to form from the coalescence of compact binaries, either of primordial origin or from dynamical interactions in globular clusters. In this paper, we investigate the possibility that the offset and afterglow brightness of a SGRB can help revealing the origin of its progenitor binary. We find that a SGRB is likely to result from the primordial channel if it is observed within 10 kpc from the center of a massive galaxy and shows a detectable afterglow. The same conclusion holds if it is 100 kpc away from a small, isolated galaxy and shows a weak afterglow. On the other hand, a dynamical origin is suggested for those SGRBs with observable afterglow either at a large separation from a massive, isolated galaxy or with an offset of 10-100 kpc from a small, isolated galaxy. We discuss the possibility that SGRBs from the dynamical channel are hosted in intra-cluster globular clusters and find that GRB 061201 may fall within this scenario.
239 - David M. Smith 2010
The detection of photons above 10 keV through MeV and GeV energies is challenging due to the penetrating nature of the radiation, which can require large detector volumes, resulting in correspondingly high background. In this energy range, most detec tors in space are either scintillators or solid-state detectors. The choice of detector technology depends on the energy range of interest, expected levels of signal and background, required energy and spatial resolution, particle environment on orbit, and other factors. This section covers the materials and configurations commonly used from 10 keV to > 1 GeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا