ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymptotic Power Utility-Based Pricing and Hedging

169   0   0.0 ( 0 )
 نشر من قبل Johannes Muhle-Karbe
 تاريخ النشر 2009
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

Kramkov and Sirbu (2006, 2007) have shown that first-order approximations of power utility-based prices and hedging strategies can be computed by solving a mean-variance hedging problem under a specific equivalent martingale measure and relative to a suitable numeraire. In order to avoid the introduction of an additional state variable necessitated by the change of numeraire, we propose an alternative representation in terms of the original numeraire. More specifically, we characterize the relevant quantities using semimartingale characteristics similarly as in Cerny and Kallsen (2007) for mean-variance hedging. These results are illustrated by applying them to exponential Levy processes and stochastic volatility models of Barndorff-Nielsen and Shephard type.



قيم البحث

اقرأ أيضاً

An investor with constant absolute risk aversion trades a risky asset with general It^o-dynamics, in the presence of small proportional transaction costs. In this setting, we formally derive a leading-order optimal trading policy and the associated w elfare, expressed in terms of the local dynamics of the frictionless optimizer. By applying these results in the presence of a random endowment, we obtain asymptotic formulas for utility indifference prices and hedging strategies in the presence of small transaction costs.
We propose a model for an insurance loss index and the claims process of a single insurance company holding a fraction of the total number of contracts that captures both ordinary losses and losses due to catastrophes. In this model we price a catast rophe derivative by the method of utility indifference pricing. The associated stochastic optimization problem is treated by techniques for piecewise deterministic Markov processes. A numerical study illustrates our results.
We consider an incomplete multi-asset binomial market model. We prove that for a wide class of contingent claims the extremal multi-step martingale measure is a power of the corresponding single-step extremal martingale measure. This allows for close d form formulas for the bounds of a no-arbitrage contingent claim price interval. We construct a feasible algorithm for computing those boundaries as well as for the corresponding hedging strategies. Our results apply, for example, to European basket call and put options and Asian arithmetic average options.
In this paper we study the pricing and hedging of structured products in energy markets, such as swing and virtual gas storage, using the exponential utility indifference pricing approach in a general incomplete multivariate market model driven by fi nitely many stochastic factors. The buyer of such contracts is allowed to trade in the forward market in order to hedge the risk of his position. We fully characterize the buyers utility indifference price of a given product in terms of continuous viscosity solutions of suitable nonlinear PDEs. This gives a way to identify reasonable candidates for the optimal exercise strategy for the structured product as well as for the corresponding hedging strategy. Moreover, in a model with two correlated assets, one traded and one nontraded, we obtain a representation of the price as the value function of an auxiliary simpler optimization problem under a risk neutral probability, that can be viewed as a perturbation of the minimal entropy martingale measure. Finally, numerical results are provided.
This paper considers exponential utility indifference pricing for a multidimensional non-traded assets model, and provides two linear approximations for the utility indifference price. The key tool is a probabilistic representation for the utility in difference price by the solution of a functional differential equation, which is termed emph{pseudo linear pricing rule}. We also provide an alternative derivation of the quadratic BSDE representation for the utility indifference price.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا