ﻻ يوجد ملخص باللغة العربية
An n-simplex is said to be n-well-centered if its circumcenter lies in its interior. We introduce several other geometric conditions and an algebraic condition that can be used to determine whether a simplex is n-well-centered. These conditions, together with some other observations, are used to describe restrictions on the local combinatorial structure of simplicial meshes in which every simplex is well-centered. In particular, it is shown that in a 3-well-centered (2-well-centered) tetrahedral mesh there are at least 7 (9) edges incident to each interior vertex, and these bounds are sharp. Moreover, it is shown that, in stark contrast to the 2-dimensional analog, where there are exactly two vertex links that prevent a well-centered triangle mesh in R^2, there are infinitely many vertex links that prohibit a well-centered tetrahedral mesh in R^3.
Meshes composed of well-centered simplices have nice orthogonal dual meshes (the dual Voronoi diagram). This is useful for certain numerical algorithms that prefer such primal-dual mesh pairs. We prove that well-centered meshes also have optimality p
A completely well-centered tetrahedral mesh is a triangulation of a three dimensional domain in which every tetrahedron and every triangle contains its circumcenter in its interior. Such meshes have applications in scientific computing and other fiel
The one-round discrete Voronoi game, with respect to a $n$-point user set $U$, consists of two players Player 1 ($mathcal{P}_1$) and Player 2 ($mathcal{P}_2$). At first, $mathcal{P}_1$ chooses a set of facilities $F_1$ following which $mathcal{P}_2$
We present a simple algorithm for computing higher-order Delaunay mosaics that works in Euclidean spaces of any finite dimensions. The algorithm selects the vertices of the order-$k$ mosaic from incrementally constructed lower-order mosaics and uses
In this paper I present several novel, efficient, algorithmic techniques for solving some multidimensional geometric data management and analysis problems. The techniques are based on several data structures from computational geometry (e.g. segment