ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonant Spin-Flavor Conversion of Supernova Neutrinos: Dependence on Electron Mole Fraction

55   0   0.0 ( 0 )
 نشر من قبل Takashi Yoshida
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. Yoshida




اسأل ChatGPT حول البحث

Detailed dependence of resonant spin-flavor (RSF) conversion of supernova neutrinos on electron mole fraction Ye is investigated. Supernova explosion forms a hot-bubble and neutrino-driven wind region of which electron mole fraction exceeds 0.5 in several seconds after the core collapse. When a higher resonance of the RSF conversion is located in the innermost region, flavor change of the neutrinos strongly depends on the sign of 1-2Ye. At an adiabatic high RSF resonance the flavor conversion of bar{nu}_e -> nu_{mu,tau} occurs in Ye < 0.5 and normal mass hierarchy or in Ye > 0.5 and inverted mass hierarchy. In other cases of Ye values and mass hierarchies, the conversion of nu_e -> bar{nu}_{mu,tau} occurs. The final bar{nu}_e spectrum is evaluated in the cases of Ye < 0.5 and Ye > 0.5 taking account of the RSF conversion. Based on the obtained result, time variation of the event number ratios of low bar{nu}_e energy to high bar{nu}_e energy is discussed. In normal mass hierarchy, an enhancement of the event ratio should be seen in the period when the electron fraction in the innermost region exceeds 0.5. In inverted mass hierarchy, on the other hand, a dip of the event ratio should be observed. Therefore, the time variation of the event number ratio is useful to investigate the effect of the RSF conversion.

قيم البحث

اقرأ أيضاً

We give a very brief overview of collective effects in neutrino oscillations in core collapse supernovae where refractive effects of neutrinos on themselves can considerably modify flavor oscillations, with possible repercussions for future supernova neutrino detection. We discuss synchronized and bipolar oscillations, the role of energy and angular neutrino modes, as well as three-flavor effects. We close with a short summary and some open questions.
64 - Lucas Johns 2021
A lingering mystery in core-collapse supernova theory is how collective neutrino oscillations affect the dynamics. All previously identified flavor instabilities, some of which might make the effects considerable, are essentially collisionless phenom ena. Here it is shown that collisional instabilities exist as well. They are associated with asymmetries between the neutrino and antineutrino interaction rates, are possibly prevalent deep inside supernovae, and pose an unusual instance of decoherent interactions with a thermal environment causing the sustained growth of quantum coherence.
Flavor-dependent neutrino emission is critical to the evolution of a supernova and its neutrino signal. In the dense anisotropic interior of the star, neutrino-neutrino forward-scattering can lead to fast collective neutrino oscillations, which has s triking consequences. We present a theory of fast flavor depolarization, explaining how neutrino flavor differences become smaller, i.e., depolarize, due to diffusion to smaller angular scales. We show that transverse relaxation determines the epoch of this irreversible depolarization. We give a method to compute the depolarized fluxes, presenting an explicit formula for simple initial conditions, which can be a crucial input for supernova theory and neutrino phenomenology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا