ترغب بنشر مسار تعليمي؟ اضغط هنا

Subaru and Gemini Observations of SS 433: New Constraint on the Mass of the Compact Object

62   0   0.0 ( 0 )
 نشر من قبل Kaori Kubota
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results of optical spectroscopic observations of the mass donor star in SS 433 with Subaru and Gemini, with an aim to best constrain the mass of the compact object. Subaru/FOCAS observations were performed on October 6-8 and 10, 2007, covering the orbital phase of phi=0.96-0.26. We first calculate cross correlation function of these spectra with that of the reference star HD 9233 in the wavelength range of 4740-4840 Angstrom. This region is selected to avoid strong absorption lines accompanied with contaminating emission components. The same analysis is applied to archive data of Gemini/GMOS taken at phi=0.84-0.30 by Hillwig & Gies (2008). From the Subaru and Gemini CCF results, the amplitude of radial velocity curve of the donor star is determined to be 58.3+/-3.8 km s-1 with a systemic velocity of 59.2+/-2.5 km s-1. Together with the radial velocity curve of the compact object, we derive the mass of the donor star and compact object to be M_O=12.4+/-1.9 M_sun and M_X=4.3+/-0.6 M_sun, respectively. We conclude, however, that these values should be taken as upper limits. From the analysis of the averaged absorption line profiles of strong lines and weak lines observed with Subaru, we find evidence for heating effects from the compact object. Using a simple model, we find that the true radial velocity amplitude of the donor star could be as low as 40+/-5 km s-1 in order to produce the observed absorption-line profiles. Taking into account the heating of the donor star may lower the derived masses to M_O=10.4 +2.3/-1.9 M_sun and M_X=2.5 +0.7/-0.6 M_sun. Our final constraint, 1.9 M_sun< M_X <4.9 M_sun, indicates that the compact object in SS 433 is most likely a low mass black hole, although the possibility of a massive neutron star cannot be firmly excluded.

قيم البحث

اقرأ أيضاً

We present LOFAR high-band data over the frequency range 115-189 MHz for the X-ray binary SS 433, obtained in an observing campaign from 2013 February - 2014 May. Our results include a deep, wide-field map, allowing a detailed view of the surrounding supernova remnant W 50 at low radio frequencies, as well as a light curve for SS 433 determined from shorter monitoring runs. The complex morphology of W 50 is in excellent agreement with previously published higher-frequency maps; we find additional evidence for a spectral turnover in the eastern wing, potentially due to foreground free-free absorption. Furthermore, SS 433 is tentatively variable at 150 MHz, with both a debiased modulation index of 11 per cent and a $chi^2$ probability of a flat light curve of $8.2 times 10^{-3}$. By comparing the LOFAR flux densities with contemporaneous observations carried out at 4800 MHz with the RATAN-600 telescope, we suggest that an observed $sim$0.5-1 Jy rise in the 150-MHz flux density may correspond to sustained flaring activity over a period of approximately six months at 4800 MHz. However, the increase is too large to be explained with a standard synchrotron bubble model. We also detect a wealth of structure along the nearby Galactic plane, including the most complete detection to date of the radio shell of the candidate supernova remnant G 38.7-1.4. This further demonstrates the potential of supernova remnant studies with the current generation of low-frequency radio telescopes.
126 - P. Picchi 2020
We present a study of the mass transfer and wind outflows of SS433, focusing on the so-called stationary lines based on archival high and low resolution optical spectra, and new optical multifilter polarimetry and low resolution optical spectra spann ing an interval of a decade and a broad range of precessional and orbital phases. We derive $text{E(B-V)}=0.86pm0.10$ and revised UV and U band polarizations and polarization angles that yield the same position angle as the optical. The polarization wavelength dependence is consistent with optical-dominating electron scattering with a Rayleigh component in U and the UV filters; no polarization changes were observed during a flare event. Using profile orbital and precessional modulation of multiple lines we derive properties for the accretion disk, present evidence for a strong disk wind, determine its velocity structure, and demonstrate its variability on timescales unrelated to the orbit. We derive a mass ratio $q=0.37pm0.04$, and masses $text{M}_X=4.2pm0.4 text{M}_odot$, $text{M}_A=11.3pm 0.6 text{M}_odot$, and show that the A star fills its Roche surface. The O I 7772 r{A} and 8446 r{A} lines show different but related orbital modulation and no evidence for a circumbinary disk component. Instead, the spectral line profile variability can be understood with an ionization stratified outflow predicted by thermal wind modeling, which also accounts for an extended equatorial structure detected at long wavelength.
We report results of the 2006 April multi-wavelengths campaign of SS 433, focusing on X-ray data observed with Suzaku at two orbital phases (in- and out-of- eclipse) and simultaneous optical spectroscopic observations. By analyzing the Fe25 K_alpha l ines originating from the jets, we detect rapid variability of the Doppler shifts, dz/dt ~ 0.019/0.33 day^-1, which is larger than those expected from the precession and/or nodding motion. This phenomenon probably corresponding to jitter motions observed for the first time in X-rays, for which significant variability both in the jet angle and intrinsic speed is required. From the time lag of optical Doppler curves from those of X-rays, we estimate the distance of the optical jets from the base to be ~(3-4) times 10^14 cm. Based on the radiatively cooling jet model, we determine the innermost temperature of the jets to be T_0 = 13 +/- 2 keV and 16 +/- 3 keV (the average of the blue and red jets) for the out-of-eclipse and in-eclipse phase, respectively, from the line intensity ratio of Fe25 K_alpha and Fe26 K_alpha. While the broad band continuum spectra over the 5--40 keV band in eclipse is consistent with a multi-temperature bremsstrahlung emission expected from the jets, and its reflection component from cold matter, the out-of-eclipse spectrum is harder than the jet emission with the base temperature determined above, implying the presence of an additional hard component.
We study the optical variability of the peculiar Galactic source SS 433 using the observations made with the Russian Turkish 1.5-m telescope (RTT150). A simple technique which allows to obtain high-quality photometric measurements with 0.3-1 s time r esolution using ordinary CCD is described in detail. Using the test observations of nonvariable stars, we show that the atmospheric turbulence introduces no significant distortions into the measured light curves. Therefore, the data obtained in this way are well suited for studying the aperiodic variability of various objects. The large amount of SS 433 optical light curve measurements obtained in this way allowed us to obtain the power spectra of its flux variability with a record sensitivity up to frequencies of ~0.5 Hz and to detect its break at frequency =~2.4e-3 Hz. We suggest that this break in the power spectrum results from the smoothing of the optical flux variability due to a finite size of the emitting region. Based on our measurement of the break frequency in the power spectrum, we estimated the size of the accretion-disk photosphere as 2e12 cm. We show that the amplitude of the variability in SS 433 decreases sharply during accretion-disk eclipses, but it does not disappear completely. This suggests that the size of the variable optical emission source is comparable to that of the normal star whose size is therefore R_O approx 2e12 cm approx 30 R_sun. The decrease in flux variability amplitude during eclipses suggests the presence of a nonvariable optical emission component with a magnitude m_R=~13.2.
The extended jets of the microquasar SS 433 have been observed in optical, radio, X-ray, and recently very-high-energy (VHE) $gamma$-rays by HAWC. The detection of HAWC $gamma$-rays with energies as great as 25 TeV motivates searches for high-energy $gamma$-ray counterparts in the Fermi-LAT data in the 100 MeV--300 GeV band. In this paper, we report on the first-ever joint analysis of Fermi-LAT and HAWC observations to study the spectrum and location of $gamma$-ray emission from SS~433. Our analysis finds common emission sites of GeV-to-TeV $gamma$-rays inside the eastern and western lobes of SS 433. The total flux above 1 GeV is $sim 1times10^{-10},rm cm^{-2},s^{-1}$ in both lobes. The $gamma$-ray spectrum in the eastern lobe is consistent with inverse-Compton emission by an electron population that is accelerated by jets. To explain both the GeV and TeV flux, the electrons need to have a soft intrinsic energy spectrum, or undergo a quick cooling process due to synchrotron radiation in a magnetized environment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا