ترغب بنشر مسار تعليمي؟ اضغط هنا

ASTEP South: An Antarctic Search for Transiting ExoPlanets around the celestial South pole

74   0   0.0 ( 0 )
 نشر من قبل Nicolas Crouzet
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Nicolas Crouzet




اسأل ChatGPT حول البحث

ASTEP South is the first phase of the ASTEP project (Antarctic Search for Transiting ExoPlanets). The instrument is a fixed 10 cm refractor with a 4kx4k CCD camera in a thermalized box, pointing continuously a 3.88 degree x 3.88 degree field of view centered on the celestial South pole. ASTEP South became fully functional in June 2008 and obtained 1592 hours of data during the 2008 Antarctic winter. The data are of good quality but the analysis has to account for changes in the point spread function due to rapid ground seeing variations and instrumental effects. The pointing direction is stable within 10 arcseconds on a daily timescale and drifts by only 34 arcseconds in 50 days. A truly continuous photometry of bright stars is possible in June (the noon sky background peaks at a magnitude R=15 arcsec-2 on June 22), but becomes challenging in July (the noon sky background magnitude is R=12.5 arcsec?2 on July 20). The weather conditions are estimated from the number of stars detected in the field. For the 2008 winter, the statistics are between 56.3 % and 68.4 % of excellent weather, 17.9 % to 30 % of veiled weather and 13.7 % of bad weather. Using these results in a probabilistic analysis of transit detection, we show that the detection efficiency of transiting exoplanets in one given field is improved at Dome C compared to a temperate site such as La Silla. For example we estimate that a year-long campaign of 10 cm refractor could reach an efficiency of 69 % at Dome C versus 45 % at La Silla for detecting 2-day period giant planets around target stars from magnitude 10 to 15. This shows the high potential of Dome C for photometry and future planet discoveries. [Short abstract]

قيم البحث

اقرأ أيضاً

93 - Nicolas Crouzet 2008
ASTEP South is the first phase of the ASTEP project that aims to determine the quality of Dome C as a site for future photometric searches for transiting exoplanets and discover extrasolar planets from the Concordia base in Antarctica. ASTEP South co nsists of a front-illuminated 4k x 4k CCD camera, a 10 cm refractor, and a simple mount in a thermalized enclosure. A double-glass window is used to reduce temperature variations and its accompanying turbulence on the optical path. The telescope is fixed and observes a 4 x 4 square degrees field of view centered on the celestial South pole. With this design, A STEP South is very stable and observes with low and constant airmass, both being important issues for photometric precision. We present the project, we show that enough stars are present in our field of view to allow the detection of one to a few transiting giant planets, and that the photometric precision of the instrument should be a few mmag for stars brighter than magnitude 12 and better than 10 mmag for stars of magnitude 14 or less.
439 - Coel Hellier 2010
Since 2006 WASP-South has been scanning the Southern sky for transiting exoplanets. Combined with Geneva Observatory radial velocities we have so far found over 30 transiting exoplanets around relatively bright stars of magnitude 9--13. We present a status report for this ongoing survey.
The ASTEP project aims at detecting and characterizing transiting planets from Dome C, Antarctica, and qualifying this site for photometry in the visible. The first phase of the project, ASTEP South, is a fixed 10 cm diameter instrument pointing cont inuously towards the celestial South pole. Observations were made almost continuously during 4 winters, from 2008 to 2011. The point-to-point RMS of 1-day photometric lightcurves can be explained by a combination of expected statistical noises, dominated by the photon noise up to magnitude 14. This RMS is large, from 2.5 mmag at R=8 to 6% at R=14, because of the small size of ASTEP South and the short exposure time (30 s). Statistical noises should be considerably reduced using the large amount of collected data. A 9.9-day period eclipsing binary is detected, with a magnitude R=9.85. The 2-season lightcurve folded in phase and binned into 1000 points has a RMS of 1.09 mmag, for an expected photon noise of 0.29 mmag. The use of the 4 seasons of data with a better detrending algorithm should yield a sub-millimagnitude precision for this folded lightcurve. Radial velocity follow-up observations are conducted and reveal a F-M binary system. The detection of this 9.9-day period system with a small instrument such as ASTEP South and the precision of the folded lightcurve show the quality of Dome C for continuous photometric observations, and its potential for the detection of planets with orbital period longer than those usually detected from the ground.
SPTpol is a dual-frequency polarization-sensitive camera that was deployed on the 10-meter South Pole Telescope in January 2012. SPTpol will measure the polarization anisotropy of the cosmic microwave background (CMB) on angular scales spanning an ar cminute to several degrees. The polarization sensitivity of SPTpol will enable a detection of the CMB B-mode polarization from the detection of the gravitational lensing of the CMB by large scale structure, and a detection or improved upper limit on a primordial signal due to inflationary gravity waves. The two measurements can be used to constrain the sum of the neutrino masses and the energy scale of inflation. These science goals can be achieved through the polarization sensitivity of the SPTpol camera and careful control of systematics. The SPTpol camera consists of 768 pixels, each containing two transition-edge sensor (TES) bolometers coupled to orthogonal polarizations, and a total of 1536 bolometers. The pixels are sensitive to light in one of two frequency bands centered at 90 and 150 GHz, with 180 pixels at 90 GHz and 588 pixels at 150 GHz. The SPTpol design has several features designed to control polarization systematics, including: single-moded feedhorns with low cross-polarization, bolometer pairs well-matched to difference atmospheric signals, an improved ground shield design based on far-sidelobe measurements of the SPT, and a small beam to reduce temperature to polarization leakage. We present an overview of the SPTpol instrument design, project status, and science projections.
100 - Nicolas Crouzet 2010
ASTEP South is an Antarctic Search for Transiting Exo- Planets in the South pole field, from the Concordia station, Dome C, Antarctica. The instrument consists of a thermalized 10 cm refractor observing a fixed 3.88degree x 3.88degree field of view t o perform photometry of several thousand stars at visible wavelengths (700-900 nm). The first winter campaign in 2008 led to the retrieval of nearly 1600 hours of data. We derive the fraction of photometric nights by measuring the number of detectable stars in the field. The method is sensitive to the presence of small cirrus clouds which are invisible to the naked eye. The fraction of night-time for which at least 50% of the stars are detected is 74% from June to September 2008. Most of the lost time (18.5% out of 26%) is due to periods of bad weather conditions lasting for a few days (white outs). Extended periods of clear weather exist. For example, between July 10 and August 10, 2008, the total fraction of time (day+night) for which photometric observations were possible was 60%. This confirms the very high quality of Dome C for nearly continuous photometric observations during the Antarctic winter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا