ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling sparse connectivity between underlying brain sources for EEG/MEG

92   0   0.0 ( 0 )
 نشر من قبل Stefan Haufe
 تاريخ النشر 2009
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a novel technique to assess functional brain connectivity in EEG/MEG signals. Our method, called Sparsely-Connected Sources Analysis (SCSA), can overcome the problem of volume conduction by modeling neural data innovatively with the following ingredients: (a) the EEG is assumed to be a linear mixture of correlated sources following a multivariate autoregressive (MVAR) model, (b) the demixing is estimated jointly with the source MVAR parameters, (c) overfitting is avoided by using the Group Lasso penalty. This approach allows to extract the appropriate level cross-talk between the extracted sources and in this manner we obtain a sparse data-driven model of functional connectivity. We demonstrate the usefulness of SCSA with simulated data, and compare to a number of existing algorithms with excellent results.

قيم البحث

اقرأ أيضاً

We present a novel solution to the problem of localization of MEG and EEG brain signals. The solution is sequential and iterative, and is based on minimizing the least-squares (LS)criterion by the Alternating Projection (AP) algorithm, which is well known in the context of array signal processing. Unlike existing scanning solutions belonging to the beamformer and multiple-signal classification (MUSIC) families, the algorithm has good performance in low signal-to-noise ratio (SNR) and can cope with closely spaced sources and any mixture of correlated sources. Results from simulated and experimental MEG data from a real phantom demonstrated robust performance across an extended SNR range, the entire inter-source correlation range, and across multiple sources, with consistently superior localization accuracy than popular scanning methods.
Our goal is to estimate causal interactions in multivariate time series. Using vector autoregressive (VAR) models, these can be defined based on non-vanishing coefficients belonging to respective time-lagged instances. As in most cases a parsimonious causality structure is assumed, a promising approach to causal discovery consists in fitting VAR models with an additional sparsity-promoting regularization. Along this line we here propose that sparsity should be enforced for the subgroups of coefficients that belong to each pair of time series, as the absence of a causal relation requires the coefficients for all time-lags to become jointly zero. Such behavior can be achieved by means of l1-l2-norm regularized regression, for which an efficient active set solver has been proposed recently. Our method is shown to outperform standard methods in recovering simulated causality graphs. The results are on par with a second novel approach which uses multiple statistical testing.
In the genomic era, the identification of gene signatures associated with disease is of significant interest. Such signatures are often used to predict clinical outcomes in new patients and aid clinical decision-making. However, recent studies have s hown that gene signatures are often not replicable. This occurrence has practical implications regarding the generalizability and clinical applicability of such signatures. To improve replicability, we introduce a novel approach to select gene signatures from multiple datasets whose effects are consistently non-zero and account for between-study heterogeneity. We build our model upon some rank-based quantities, facilitating integration over different genomic datasets. A high dimensional penalized Generalized Linear Mixed Model (pGLMM) is used to select gene signatures and address data heterogeneity. We compare our method to some commonly used strategies that select gene signatures ignoring between-study heterogeneity. We provide asymptotic results justifying the performance of our method and demonstrate its advantage in the presence of heterogeneity through thorough simulation studies. Lastly, we motivate our method through a case study subtyping pancreatic cancer patients from four gene expression studies.
Multiple-subject network data are fast emerging in recent years, where a separate connectivity matrix is measured over a common set of nodes for each individual subject, along with subject covariates information. In this article, we propose a new gen eralized matrix response regression model, where the observed networks are treated as matrix-valued responses and the subject covariates as predictors. The new model characterizes the population-level connectivity pattern through a low-rank intercept matrix, and the effect of subject covariates through a sparse slope tensor. We develop an efficient alternating gradient descent algorithm for parameter estimation, and establish the non-asymptotic error bound for the actual estimator from the algorithm, which quantifies the interplay between the computational and statistical errors. We further show the strong consistency for graph community recovery, as well as the edge selection consistency. We demonstrate the efficacy of our method through simulations and two brain connectivity studies.
53 - Moo K. Chung 2020
There have been many attempts to identify high-dimensional network features via multivariate approaches. Specifically, when the number of voxels or nodes, denoted as p, are substantially larger than the number of images, denoted as n, it produces an under-determined model with infinitely many possible solutions. The small-n large-p problem is often remedied by regularizing the under-determined system with additional sparse penalties. Popular sparse network models include sparse correlations, LASSO, sparse canonical correlations and graphical-LASSO. These popular sparse models require optimizing L1-norm penalties, which has been the major computational bottleneck for solving large-scale problems. Thus, many existing sparse brain network models in brain imaging have been restricted to a few hundreds nodes or less. 2527 MRI features used in a LASSO model for Alzheimers disease is probably the largest number of features used in any sparse model in the brain imaging literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا