ﻻ يوجد ملخص باللغة العربية
On the basis of local nonequilibrium approach, the one-dimensional model of the solute diffusion during rapid solidification of the binary alloy in the semi-infinite volume is considered. Within the scope of the model it is supposed that mass transport is described by the telegrapher equation. The basic assumption concerns the behavior of the diffusion flux and the solute concentration at the interface. Under the condition that these quantities are given by the superposition of the exponential functions the solutions of the telegrapher equation determining the flux and the solute distributions in the melt have been found. On the basis of these solutions different regimes of the solidification in the near surface region and the behavior of the partition coefficient have been investigated. The concentration profiles in the solid after complete solidification are analyzed depending on the model parameters.
We investigated the homogenous nucleation of the stoichiometric B2 and B33 phases in the Ni50Zr50 alloy using the persistent embryo method and the classical nucleation theory. The two phases become very close competitors at large supercoolings, which
The process of rapid solidification of a binary mixture is considered in the framework of local nonequilibrium model (LNM) based on the assumption that there is no local equilibrium in solute diffusion in the bulk liquid and at the solid-liquid inter
Molecular dynamics simulation study based on the EAM potential is carried out to investigate the effect of pressure on the rapid solidification of Aluminum. The radial distribution function is used to characterize the structure of the Al solidified u
We report ultrafast transient-grating measurements, above and below the Curie temperature, of the dilute ferromagnetic semiconductor (Ga,Mn)As containing 6% Mn. At 80 K (15 K), we observe that photoexcited electrons in the conduction band have a life
We simulate dendritic growth in directional solidification in dilute binary alloys using a phase-field model solved with an adaptive-mesh refinement. The spacing of primary branches is examined for a range of thermal gradients and alloy compositions