ترغب بنشر مسار تعليمي؟ اضغط هنا

Protoplanetary disks of TTauri binaries in Orion: Prospects for planet formation

115   0   0.0 ( 0 )
 نشر من قبل Monika Petr-Gotzens
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dusty protoplanetary disks surrounding young low-mass stars are the birthplaces of planets. Studies of the evolutionary timescales of such disks provide important constraints on the timescales of planet formation. Binary companions, however, can influence circumstellar disk evolution through tidal interactions. In order to trace protoplanetary disks and their properties in young binary systems, as well as to study the effect of binarity on circumstellar disk lifetimes, we have carried out spatially resolved spectroscopy for several low-mass binaries in the well-known Orion Nebula Cluster. Br$_{gamma}$ emission, which we detect in several systems, is used as a tracer for the presence of an active accretion disk around a binary component. We find a paucity of actively accreting secondaries, and hence, evidence that in a binary system it is the lower mass component that disperses its disk faster.



قيم البحث

اقرأ أيضاً

Successful exoplanet surveys in the last decade have revealed that planets are ubiquitous throughout the Milky Way, and show a large diversity in mass, location and composition. At the same time, new facilities such as the Atacama Large Millimeter/su bmillimeter Array (ALMA) and optical/infrared facilities including Gemini/GPI have provided us with sharper images than ever before of protoplanetary disks around young stars, the birth cradles of planets. The high spatial resolution has revealed astonishing structures in disks, such as rings, gaps, asymmetries and spiral arms, and the enormous jump in sensitivity has provided the tools for both large, statistically relevant surveys and deep, sensitive molecular line studies. These observations have revolutionized our view of planet formation, disk formation and disk evolution, bringing model simulations and observations closer to the same level of detail, with many contributions from Canadian researchers on theoretical, observational and technological sides. The new results have inevitably led to a range of new questions, which require next generation instruments such as the Next Generation Very Large Array (ngVLA) and large scale optical infrared facilities. In this white paper we will discuss the current transformation in our understanding of planet formation and the next steps and challenges in connecting theory with exoplanet demographics and protoplanetary disk observations for Canadian research.
We present ALMA observations of the Orion Nebula that cover the OMC1 outflow region. Our focus in this paper is on compact emission from protoplanetary disks. We mosaicked a field containing $sim 600$ near-IR-identified young stars, around which we c an search for sub-mm emission tracing dusty disks. Approximately 100 sources are known proplyds identified with HST. We detect continuum emission at 1 mm wavelengths towards $sim 20%$ of the proplyd sample, and $sim 8%$ of the larger sample of near-IR objects. The noise in our maps allows 4$sigma$ detection of objects brighter than $sim 1.5$ mJy, corresponding to protoplanetary disk masses larger than 1.5 M$_{rm J}$ (using standard assumptions about dust opacities and gas-to-dust ratios). None of these disks are detected in contemporaneous CO(2-1) or C$^{18}$O(2-1) observations, suggesting that the gas-to-dust ratios may be substantially smaller than the canonical value of 100. Furthermore, since dust grains may already be sequestered in large bodies in ONC disks, the inferred masses of disk solids may be underestimated. Our results suggest that the distribution of disk masses in this region is compatible with the detection rate of massive planets around M dwarfs, which are the dominant stellar constituent in the ONC.
162 - O. M. Guilera , Zs. Sandor 2016
In the classical core-accretion planet formation scenario, rapid inward migration and accretion timescales of kilometer size planetesimals may not favor the formation of massive cores of giant planets before the dissipation of protoplanetary disks. O n the other hand, the existence of pressure maxima in the disk could act as migration traps and locations for solid material accumulation, favoring the formation of massive cores. We aim to study the radial drift of pebbles and planetesimals and planet migration at pressure maxima in a protoplanetary disk and their implications for the formation of massive cores as triggering a gaseous runaway accretion phase. The time evolution of a viscosity driven accretion disk is solved numerically introducing a a dead zone as a low-viscosity region in the protoplanetary disk. A population of pebbles and planetesimals evolving by radial drift and accretion by the planets is also considered. Finally, the embryos embedded in the disk grow by the simultaneous accretion of pebbles, planetesimals and the surrounding gas. Our simulations show that the pressure maxima generated at the edges of the low-viscosity region of the disk act as planet migration traps, and that the pebble and planetesimal surface densities are significantly increased due to the radial drift towards pressure maxima locations. However, our simulations also show that migration trap locations and solid material accumulation locations are not exactly at the same positions. Thus, a planets semi-major axis oscillations around zero torque locations, predicted by MHD and HD simulations, are needed for the planet to accrete all the available material accumulated at the pressure maxima. Pressure maxima generated at the edges of a low-viscosity region of a protoplanetary disk seem to be preferential locations for the formation and trap of massive cores.
The results of single-dish observations of low- and high-J transitions of selected molecules from protoplanetary disks around two TTauri stars (LkCa15 and TWHya) and two HerbigAe stars (HD163296 and MWC480) are reported. Simple molecules such as CO, 13CO, HCO+, CN and HCN are detected. Several lines of H2CO are found toward the TTauri star LkCa15 but not in other objects. No CH3OH has been detected down to abundances of 10E-9 - 10E-8 with respect to H2. SO and CS lines have been searched for without success. Line ratios indicate that the molecular emission arises from dense 10E6 - 10E8 cm-3 and moderately warm (T ~ 20-40K) intermediate height regions of the disk atmosphere, in accordance with predictions from models of the chemistry in disks. The abundances of most species are lower than in the envelope around the solar-mass protostar IRAS 16293-2422. Freeze-out and photodissociation are likely causes of the depletion. DCO+ is detected toward TWHya, but not in other objects. The high inferred DCO+/HCO+ ratio of ~0.035 is consistent with models of the deuterium fractionation in disks which include strong depletion of CO. The inferred ionization fraction in the intermediate height regions as deduced from HCO+ is at least 10E-11 - 10E-10, comparable to that derived for the midplane from recent H2D+ observations. (abridged abstract)
We present the first part of our DARTTS-S (Disks ARound TTauri Stars with SPHERE) survey: Observations of 8 TTauri stars which were selected based on their strong (sub-)mm excesses using SPHERE / IRDIS polarimetric differential imaging (PDI) in the J and H bands. All observations successfully detect the disks, which appear vastly different in size, from $approx$80 au in scattered light to $>$400 au, and display total polarized disk fluxes between 0.06% and 0.89% of the stellar flux. For five of these disks, we are able to determine the three-dimensional structure and the flaring of the disk surface, which appears to be relatively consistent across the different disks, with flaring exponents $alpha$ between $approx$1.1 and $approx$1.6. We also confirm literature results w.r.t. the inclination and position angle of several of our disk, and are able to determine which side is the near side of the disk in most cases. While there is a clear trend of disk mass with stellar ages ($approx$1 Myr to $>$10 Myr), no correlations of disk structures with age were found. There are also no correlations with either stellar mass or sub-mm flux. We do not detect significant differences between the J and H bands. However, we note that while a high fraction (7/8) of the disks in our sample show ring-shaped sub-structures, none of them display spirals, in contrast to the disks around more massive Herbig Ae/Be stars, where spiral features are common.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا