ﻻ يوجد ملخص باللغة العربية
In previous works it was shown that protein 3D-conformations could be encoded into discrete sequences called dominance partition sequences (DPS), that generated a linear partition of molecular conformational space into regions of molecular conformations that have the same DPS. In this work we describe procedures for building in a cubic lattice the set of 3D-conformations that are compatible with a given DPS. Furthermore, this set can be structured as a graph upon which a combinatorial algorithm can be applied for computing the mean energy of the conformations in a cell.
In the first work of this series [physics/0204035] it was shown that the conformational space of a molecule could be described to a fair degree of accuracy by means of a central hyperplane arrangement. The hyperplanes divide the espace into a hierarc
In a previous work a procedure was decribed for dividing the $3 times N$-dimensional conformational space of a molecular system into a number of discrete cells, this partition allowed the building of a combinatorial structure from data sampled in mol
In previous works [physics/0204035, physics/0404052, physics/0509126] a procedure was described for dividing the $3 times N$-dimensional conformational space of a molecular system into a number of discrete cells, this partition allowed the building o
On the basis of empirical evidence from molecular dynamics simulations, molecular conformational space can be described by means of a partition of central conical regions characterized by the dominance relations between cartesian coordinates. This wo
In a previous work arXiv:physics/0611108v2, it was shown that the volume spanned by a molecular system in its conformational space can be effectively bounded by a polyhedral cone, this cone is described by means of a simple combinatorial formula. On