ﻻ يوجد ملخص باللغة العربية
Based the Alfven wave oscillation model (AWOM) and relativistic precession model (RPM) for twin kHz QPOs, we estimate the emission positions of most detected kHz QPOs to be at r=18+-3 km (R/15km) except Cir X-1 at r = 30+-5 km (R/15km). For the proposed Keplerian frequency as an upper limit to kHz QPO, the spin effects in Kerr Spacetime are discussed, which have about a 5% (2%) modification for that of the Schwarzchild case for the spin frequency of 1000 (400) Hz.The application to the four typical QPO sources, Cir X-1, Sco X-1, SAX J1808.4-3658 and XTE 1807-294, is mentioned.
We take the recently published data of twin kHz quasi-period oscillations (QPOs) in neutron star (NS) lowmass X-ray binaries (LMXBs) as the samples, and investigate the morphology of the samples, which focuses on the quality factor, peak frequency of
3D MHD simulation of accretion onto neutron stars have shown in the last few years that the footprint (hotspot) of the accretion flow changes with time. Two different kinds of accretion, namely the funnel flow and the equatorial accretion produced by
While kilohertz quasi-periodic oscillations (kHz QPOs) have been well studied for decades since their initial discovery, the cause of these signals remains unknown, as no model has been able to accurately predict all of their spectral and timing prop
We investigate the quality factor and RMS amplitude of the lower kHz QPOs from XTE J1701-462, a unique X-ray source which was observed in both the so-called Z and atoll states. Correcting for the frequency drift of the QPO, we show that, as in all so
We present a detailed spectral-timing analysis of the Kilohertz quasi-periodic oscillations (kHz QPOs) in Sco X-1 using the data of Rossi X-ray Timing Explorer ($RXTE$) and the Hard X-ray Modulation Telescope ($Insight$-HXMT). The energy band with de