ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of very high energy gamma rays from PKS 1424+240 and multiwavelength constraints on its redshift

111   0   0.0 ( 0 )
 نشر من قبل Adam Nepomuk Otte
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the first detection of very-high-energy (VHE) gamma-ray emission above 140 GeV from PKS 1424+240, a BL Lac object with an unknown redshift. The photon spectrum above 140 GeV measured by VERITAS is well described by a power law with a photon index of 3.8 +- 0.5_stat +- 0.3_syst and a flux normalization at 200 GeV of (5.1 +- 0.9_stat +- 0.5_syst) x 10^{-11} TeV^-1 cm^-2 s^-1, where stat and syst denote the statistical and systematical uncertainty, respectively. The VHE flux is steady over the observation period between MJD 54881 and 55003 (2009 February 19 to June 21). Flux variability is also not observed in contemporaneous high energy observations with the Fermi Large Area Telescope (LAT). Contemporaneous X-ray and optical data were also obtained from the Swift XRT and MDM observatory, respectively. The broadband spectral energy distribution (SED) is well described by a one-zone synchrotron self-Compton (SSC) model favoring a redshift of less than 0.1. Using the photon index measured with Fermi in combination with recent extragalactic background light (EBL) absorption models it can be concluded from the VERITAS data that the redshift of PKS 1424+240 is less than 0.66.



قيم البحث

اقرأ أيضاً

PKS 1424+240 is a BL-Lac blazar with unknown redshift detected at high-energy gamma rays by Fermi-LAT with a hard spectrum. It was first detected at very-high-energy by VERITAS and latter confirmed by MAGIC. Attempts to find limits on its redshift in clude three estimations by modeling gamma-ray observations, and one obtained by analyzing Lyb and Lyg absorption lines observed in the far-UV spectra (from HST/COS) caused by absorbing gas along the line of sight. They allowed to constrain the redshift range to 0:6<z<1:19, which places PKS 1424+240 in the very interesting condition to be one of the few candidates to be the most distant blazars detected at very-high-energy gamma rays. Redshift determination of BL-Lac objects are difficult to achieve. We have found that redshift of blazars can be determined by its association to a galaxy group or cluster. To explore this possibility for PKS 1424+240, we have carried out spectroscopic measurements with the Gemini North telescope of galaxies in its field of view. In this work we present the optical spectrum of PKS 1424+240 and show preliminary results of the blazar environment characterization. Spectroscopic redshift using the optical spectrum of PKS 1424+240 could not be determined in this work.
We present deep VERITAS observations of the blazar PKS 1424+240, along with contemporaneous Fermi Large Area Telescope, Swift X-ray Telescope and Swift UV Optical Telescope data between 2009 February 19 and 2013 June 8. This blazar resides at a redsh ift of $zge0.6035$, displaying a significantly attenuated gamma-ray flux above 100 GeV due to photon absorption via pair-production with the extragalactic background light. We present more than 100 hours of VERITAS observations from three years, a multiwavelength light curve and the contemporaneous spectral energy distributions. The source shows a higher flux of (2.1$pm0.3$)$times10^{-7}$ ph m$^{-2}$s$^{-1}$ above 120 GeV in 2009 and 2011 as compared to the flux measured in 2013, corresponding to (1.02$pm0.08$)$times10^{-7}$ ph m$^{-2}$s$^{-1}$ above 120 GeV. The measured differential very high energy (VHE; $Ege100$ GeV) spectral indices are $Gamma=$3.8$pm$0.3, 4.3$pm$0.6 and 4.5$pm$0.2 in 2009, 2011 and 2013, respectively. No significant spectral change across the observation epochs is detected. We find no evidence for variability at gamma-ray opacities of greater than $tau=2$, where it is postulated that any variability would be small and occur on longer than year timescales if hadronic cosmic-ray interactions with extragalactic photon fields provide a secondary VHE photon flux. The data cannot rule out such variability due to low statistics.
We present a study of the very high energy (VHE; E > 100 GeV) gamma-ray emission of the blazar PKS 1424+240 observed with the MAGIC telescopes. The primary aim of this paper is the multiwavelength spectral characterization and modeling of this blazar , which is made particularly interesting by the recent discovery of a lower limit of its redshift of z > 0.6 and makes it a promising candidate to be the most distant VHE source. The source has been observed with the MAGIC telescopes in VHE gamma rays for a total observation time of ~33.6 h from 2009 to 2011. The source was marginally detected in VHE gamma rays during 2009 and 2010, and later, the detection was confirmed during an optical outburst in 2011. The combined significance of the stacked sample is ~7.2 sigma. The differential spectra measured during the different campaigns can be described by steep power laws with the indices ranging from 3.5 +/- 1.2 to 5.0 +/- 1.7. The MAGIC spectra corrected for the absorption due to the extragalactic background light connect smoothly, within systematic errors, with the mean spectrum in 2009-2011 observed at lower energies by the Fermi-LAT. The absorption-corrected MAGIC spectrum is flat with no apparent turn down up to 400 GeV. The multiwavelength light curve shows increasing flux in radio and optical bands that could point to a common origin from the same region of the jet. The large separation between the two peaks of the constructed non-simultaneous spectral energy distribution also requires an extremely high Doppler factor if an one zone synchrotron self-Compton model is applied. We find that a two-component synchrotron self-Compton model describes the spectral energy distribution of the source well, if the source is located at z~0.6.
The BL Lacertae object 1ES 1440+122 was observed in the energy range from 85 GeV to 30 TeV by the VERITAS array of imaging atmospheric Cherenkov telescopes. The observations, taken between 2008 May and 2010 June and totalling 53 hours, resulted in th e discovery of $gamma$-ray emission from the blazar, which has a redshift $z$=0.163. 1ES 1440+122 is detected at a statistical significance of 5.5 standard deviations above the background with an integral flux of (2.8$pm0.7_{mathrm{stat}}pm0.8_{mathrm{sys}}$) $times$ 10$^{-12}$ cm$^{-2}$ s$^{-1}$ (1.2% of the Crab Nebulas flux) above 200 GeV. The measured spectrum is described well by a power law from 0.2 TeV to 1.3 TeV with a photon index of 3.1 $pm$ 0.4$_{mathrm{stat}}$ $pm$ 0.2$_{mathrm{sys}}$. Quasi-simultaneous multi-wavelength data from the Fermi Large Area Telescope (0.3--300 GeV) and the Swift X-ray Telescope (0.2--10 keV) are additionally used to model the properties of the emission region. A synchrotron self-Compton model produces a good representation of the multi-wavelength data. Adding an external-Compton or a hadronic component also adequately describes the data.
PKS 0625-354 (z=0.055) was observed with the four H.E.S.S. telescopes in 2012 during 5.5 hours. The source was detected above an energy threshold of 200 GeV at a significance level of 6.1$sigma$. No significant variability is found in these observati ons. The source is well described with a power-law spectrum with photon index $Gamma =2.84 pm 0.50_{stat} pm 0.10_{syst}$ and normalization (at $E_0$=1.0 TeV) $N_0(E_0)=(0.58 pm 0.22_{stat} pm 0.12_{syst})times10^{-12}$ TeV$^{-1}$cm$^{-2}$s$^{-1}$. Multi-wavelength data collected with Fermi-LAT, Swift-XRT, Swift-UVOT, ATOM and WISE are also analysed. Significant variability is observed only in the Fermi-LAT $gamma$-ray and Swift-XRT X-ray energy bands. Having a good multi-wavelength coverage from radio to very high energy, we performed a broadband modelling from two types of emission scenarios. The results from a one zone lepto-hadronic, and a multi-zone leptonic models are compared and discussed. On the grounds of energetics, our analysis favours a leptonic multi-zone model. Models associated to the X-ray variability constraint supports previous results suggesting a BL Lac nature of PKS 0625-354, with, however, a large-scale jet structure typical of a radio galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا