ترغب بنشر مسار تعليمي؟ اضغط هنا

Bound-magnetic-polaron molecule in diluted magnetic semiconductors

213   0   0.0 ( 0 )
 نشر من قبل Henryk Bednarski
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We formulate a complete microscopic theory of a coupled pair of bound magnetic polarons, the bound-magnetic-polaron molecule (BMPM) in a diluted magnetic semiconductor (DMS) by taking into account both a proper two-body nature of the impurity-electron wave function and within the general spin-rotation-invariant approach to the electronic states. We also take into account both the Heisenberg and the antiferromagnetic kinetic-exchange interactions, as well as the ferromagnetic coupling within the common spin BMPM cloud. The thermodynamic fluctuations of the spin cloud within the polaron effective Bohr radius of each polaron are taken as Gaussian.



قيم البحث

اقرأ أيضاً

105 - T. Chanier , F. Virot , R. Hayn 2009
We have calculated the chemical trend of magnetic exchange parameters ($J_{dd}$, $N alpha$, and $N beta$) of Zn-based II-VI semiconductors ZnA (A=O, S, Se, and Te) doped with Co or Mn. We show that a proper treatment of electron correlations by the L SDA+$U$ method leads to good agreement between experimental and theoretical values of the nearest-neighbor exchange coupling $J_{dd}$ between localized 3$d$ spins in contrast to the LSDA method. The exchange couplings between localized spins and doped electrons in the conduction band $N alpha$ are in good agreement with experiment as well. But the values for $N beta$ (coupling to doped holes in the valence band) indicate a cross-over from weak coupling (for A=Te and Se) to strong coupling (for A=O) and a localized hole state in ZnO:Mn. That hole localization explains the apparent discrepancy between photoemission and magneto-optical data for ZnO:Mn.
We present a dynamical model that successfully explains the observed time evolution of the magnetization in diluted magnetic semiconductor quantum wells after weak laser excitation. Based on the pseudo-fermion formalism and a second order many-partic le expansion of the exact p-d exchange interaction, our approach goes beyond the usual mean-field approximation. It includes both the sub-picosecond demagnetization dynamics and the slower relaxation processes which restore the initial ferromagnetic order in a nanosecond time scale. In agreement with experimental results, our numerical simulations show that, depending on the value of the initial lattice temperature, a subsequent enhancement of the total magnetization may be observed within a time scale of few hundreds of picoseconds.
We show the possibility of long-range ferrimagnetic ordering with a saturation magnetisation of the order of 1 Bohr magneton per spin for arbitrarily low concentration of magnetic impurities in semiconductors, provided that the impurities form a supe rstructure satisfying the conditions of the Lieb-Mattis theorem. Explicit examples of such superstructures are given for the wurtzite lattice, and the temperature of ferrimagnetic transition is estimated from a high-temperature expansion. Exact diagonalization studies show that small fragments of the structure exhibit enhanced magnetic response and isotropic superparamagnetism at low temperatures. A quantum transition in a high magnetic field is considered and similar superstructures in cubic semiconductors are discussed as well.
100 - Quan Wang , Huiyuan Man , Cui Ding 2014
We report the synthesis and characterization of bulk form diluted magnetic semiconductors I-II-V Li1.1(Zn1-xCrx)As (x = 0.03, 0.05, 0.10, 0.15)with a cubic crystal structure identical to that of III-V GaAs and II-VI zinc-blende ZnSe. With p-type carr iers created by excess Li, 10% Cr substitution for Zn results in a ferromagnetic ordering below TC ~ 218 K. Li(Zn,Cr)As represents another magnetic semiconducting system with the advantage of decoupling carriers and spins, where carriers are created by adding extra Li and spins are introduced by Cr substitution for Zn.
135 - D. Veberic 1997
The influence of the homogeneous magnetic field on a single mobile hole in a magnetic insulator, as represented by the two-dimensional t-J model, is investigated by considering the coupling of the field to the orbital current. The energy of the J=0 s ystem is analysed via the high-temperature expansion and the small system diagonalization. The susceptibility is shown to be diamagnetic and diverging at low temperatures T. In contrast, in the antiferrmagnetic J>0 case small systems generically reveal a tendency towards a paramagnetic response in larger fields at low T. By employing at T=0 the cumulant expansion we study the ground state in arbitrary B, showing a behavior very sensitive to the character of the quasiparticle dispersion and the magnetic-field strength. At low B the perturbation and small-systems results are consistent with a pronounced diamagnetic susceptibility at T->0, but indicate on a suppressed contribution at intermediate T~J.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا