ترغب بنشر مسار تعليمي؟ اضغط هنا

Turbulence and the formation of filaments, loops and shock fronts in NGC 1275 in the Perseus Galaxy Cluster

103   0   0.0 ( 0 )
 نشر من قبل Diego Falceta-Goncalves Prof. Dr.
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

NGC1275, the central galaxy in the Perseus cluster, is the host of gigantic hot bipolar bubbles inflated by AGN jets observed in the radio as Perseus A. It presents a spectacular $H{alpha}$-emitting nebulosity surrounding NGC1275, with loops and filaments of gas extending to over 50 kpc. The origin of the filaments is still unknown, but probably correlates with the mechanism responsible for the giant buoyant bubbles. We present 2.5 and 3-dimensional MHD simulations of the central region of the cluster in which turbulent energy, possibly triggered by star formation and supernovae (SNe) explosions is introduced. The simulations reveal that the turbulence injected by massive stars could be responsible for the nearly isotropic distribution of filaments and loops that drag magnetic fields upward as indicated by recent observations. Weak shell-like shock fronts propagating into the ICM with velocities of 100-500 km/s are found, also resembling the observations. The isotropic outflow momentum of the turbulence slows the infall of the intracluster medium, thus limiting further starburst activity in NGC1275. As the turbulence is subsonic over most of the simulated volume, the turbulent kinetic energy is not efficiently converted into heat and additional heating is required to suppress the cooling flow at the core of the cluster. Simulations combining the MHD turbulence with the AGN outflow can reproduce the temperature radial profile observed around NGC1275. While the AGN mechanism is the main heating source, the supernovae are crucial to isotropize the energy distribution.

قيم البحث

اقرأ أيضاً

We present a new Chandra X-ray observation of the off-axis galaxy group merger RXJ0751.3+5012. The hot atmospheres of the two colliding groups appear highly distorted by the merger. The images reveal arc-like cold fronts around each group core, produ ced by the motion through the ambient medium, and the first detection of a group merger shock front. We detect a clear density and temperature jump associated with a bow shock of Mach number M=1.9+/-0.4 ahead of the northern group. Using galaxy redshifts and the shock velocity of 1100+/-300 km/s, we estimate that the merger axis is only 10deg from the plane of the sky. From the projected group separation of 90 kpc, this corresponds to a time since closest approach of 0.1 Gyr. The northern group hosts a dense, cool core with a ram pressure stripped tail of gas extending 100 kpc. The sheared sides of this tail appear distorted and broadened by Kelvin-Helmholtz instabilities. We use the presence of this substructure to place an upper limit on the magnetic field strength and, for Spitzer-like viscosity, show that the development of these structures is consistent with the critical perturbation length above which instabilities can grow in the intragroup medium. The northern group core also hosts a galaxy pair, UGC4052, with a surrounding IR and near-UV ring 40 kpc in diameter. The ring may have been produced by tidal stripping of a smaller galaxy by UGC4052 or it may be a collisional ring generated by a close encounter between the two large galaxies.
We report the results of high spatial and spectral resolution integral-field spectroscopy of the central ~3 x 3 arcsec^2 of the active galaxy NGC 1275 (Perseus A), based on observations with the Near-infrared Integral Field Spectrograph (NIFS) and th e ALTAIR adaptive-optics system on the Gemini North telescope. The circum-nuclear disc in the inner R~50 pc of NGC 1275 is seen in both the H2 and [FeII] lines. The disc is interpreted as the outer part of a collisionally-excited turbulent accretion disc. The kinematic major axis of the disc at a position angle of 68 deg is oriented perpendicular to the radio jet. A streamer-like feature to the south-west of the disc, detected in H2 but not in [FeII], is discussed as one of possibly several molecular streamers, presumably falling into the nuclear region. Indications of an ionization structure within the disc are deduced from the HeI and Br gamma emission lines, which may partially originate from the inner portions of the accretion disc. The kinematics of these two lines agrees with the signature of the circum-nuclear disc, but both lines display a larger central velocity dispersion than the H2 line. The rovibrational H2 transitions from the core of NGC 1275 are indicative of thermal excitation caused by shocks and agree with excitation temperatures of ~1360 and ~4290 K for the lower- and higher-energy H2 transitions, respectively. The data suggest X-ray heating as the dominant excitation mechanism of [FeII] emission in the core, while fast shocks are a possible alternative. The [FeII] lines indicate an electron density of ~4000 cm^{-3}. The H2 disc is modelled using simulated NIFS data cubes of H2 emission from inclined discs in Keplerian rotation around a central mass. Assuming a disc inclination of 45 deg +/- 10 deg, the best-fitting models imply a central mass of (8^{+7}_{-2}) x 10^8 Msun. (abridged)
We present the results of the first search for Ultra Compact Dwarfs (UCDs) in the Perseus Cluster core, including the region of the cluster around the unusual Brightest Cluster Galaxy (BCG) NGC 1275. Utilising Hubble Space Telescope Advanced Camera f or Surveys imaging, we identify a sample of 84 UCD candidates with half-light radii 10 pc < r_e < 57 pc out to a distance of 250 kpc from the cluster centre, covering a total survey area of ~70 armin^2. All UCDs in Perseus lie in the same size-luminosity locus seen for confirmed UCDs in other regions of the local Universe. The majority of UCDs are brighter than M_R = -10.5, and lie on an extrapolation of the red sequence followed by the Perseus Cluster dwarf elliptical population to fainter magnitudes. However, three UCD candidates in the vicinity of NGC 1275 are very blue, with colours (B-R)_0 < 0.6 implying a cessation of star formation within the past 100 Myr. Furthermore, large blue star clusters embedded in the star forming filaments are highly indicative that both proto-globular clusters (GCs) and proto-UCDs are actively forming at the present day in Perseus. We therefore suggest star forming filaments as a formation site for some UCDs, with searches necessary in other low redshift analogues of NGC 1275 necessary to test this hypothesis. We also suggest that tidal disruption of dwarf galaxies is another formation channel for UCD formation in the core of Perseus as tidal disruption is ongoing in this region as evidenced by shells around NGC 1275. Finally, UCDs may simply be massive GCs based on strong similarities in the colour trends of the two populations.
We present a new Chandra observation of the galaxy cluster Abell 2146 which has revealed a complex merging system with a gas structure that is remarkably similar to the Bullet cluster (eg. Markevitch et al. 2002). The X-ray image and temperature map show a cool 2-3 keV subcluster with a ram pressure stripped tail of gas just exiting the disrupted 6-7 keV primary cluster. From the sharp jump in the temperature and density of the gas, we determine that the subcluster is preceded by a bow shock with a Mach number M=2.2+/-0.8, corresponding to a velocity v=2200^{+1000}_{-900} km/s relative to the main cluster. We estimate that the subcluster passed through the primary core only 0.1-0.3 Gyr ago. In addition, we observe a slower upstream shock propagating through the outer region of the primary cluster and calculate a Mach number M=1.7+/-0.3. Based on the measured shock Mach numbers M~2 and the strength of the upstream shock, we argue that the mass ratio between the two merging clusters is between 3 and 4 to one. By comparing the Chandra observation with an archival HST observation, we find that a group of galaxies is located in front of the X-ray subcluster core but the brightest cluster galaxy is located immediately behind the X-ray peak.
Previous X-ray studies of the Perseus Cluster, consisting of 85 Suzaku pointings along eight azimuthal directions, revealed a particularly steep decrease in the projected temperature profile near the virial radius (~r200) towards the northwest (NW). To further explore this shock candidate, another 4 Suzaku observations on the NW edge of the Perseus Cluster have been obtained. These deeper data were designed to provide the best possible control of systematic uncertainties in the spectral analysis. Using the combined Suzaku observations, we have carefully investigated this interesting region by analyzing the spectra of various annuli and extracting projected thermodynamic profiles. We find that the projected temperature profile shows a break near r200, indicating a shock with M = 1.9+-0.3. Corresponding discontinuities are also found in the projected emission measure and the density profiles at the same location. This evidence of a shock front so far away from the cluster center is unprecedented, and may provide a first insight into the properties of large-scale virial shocks which shape the process of galaxy cluster growth.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا