ﻻ يوجد ملخص باللغة العربية
The isomorphism number (resp. isogeny cutoff) of a p-divisible group D over an algebraically closed field is the least positive integer m such that D[p^m] determines D up to isomorphism (resp. up to isogeny). We show that these invariants are lower semicontinuous in families of p-divisible groups of constant Newton polygon. Thus they allow refinements of Newton polygon strata. In each isogeny class of p-divisible groups, we determine the maximal value of isogeny cutoffs and give an upper bound for isomorphism numbers, which is shown to be optimal in the isoclinic case. In particular, the latter disproves a conjecture of Traverso. As an application, we answer a question of Zink on the liftability of an endomorphism of D[p^m] to D.
Let $p$ be a prime. Let $(R,ideal{m})$ be a regular local ring of mixed characteristic $(0,p)$ and absolute index of ramification $e$. We provide general criteria of when each abelian scheme over $Spec Rsetminus{ideal{m}}$ extends to an abelian schem
Let $k$ be a field of characteristic $p>0$. Let $D_m$ be a $BT_m$ over $k$ (i.e., an $m$-truncated Barsotti--Tate group over $k$). Let $S$ be abreak $k$-scheme and let $X$ be a $BT_m$ over $S$. Let $S_{D_m}(X)$ be the subscheme of $S$ which describes
This paper generalizes the classical theory of Newton polygons from the case of general linear groups to the case of split reductive groups. It also gives a root-theoretic formula for dimensions of Newton strata in the adjoint quotients of reductive groups.
A p-divisible group, or more generally an F-crystal, is said to be Hodge-Newton reducible if its Hodge polygon passes through a break point of its Newton polygon. Katz proved that Hodge-Newton reducible F-crystals admit a canonical filtration called
We investigate Siegel modular varieties in positive characteristic with Iwahori level structure. On these spaces, we have the Newton stratification, and the Kottwitz-Rapoport stratification; one would like to understand how these stratifications are