ترغب بنشر مسار تعليمي؟ اضغط هنا

The effect of a velocity barrier on the ballistic transport of Dirac fermions

37   0   0.0 ( 0 )
 نشر من قبل Andres Concha
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a novel way to manipulate the transport properties of massless Dirac fermions by using velocity barriers, defining the region in which the Fermi velocity, $v_{F}$, has a value that differs from the one in the surrounding background. The idea is based on the fact that when waves travel accross different media, there are boundary conditions that must be satisfied, giving rise to Snells-like laws. We find that the transmission through a velocity barrier is highly anisotropic, and that perfect transmission always occurs at normal incidence. When $v_{F}$ in the barrier is larger that the velocity outside the barrier, we find that a critical transmission angle exists, a Brewster-like angle for massless Dirac electrons.

قيم البحث

اقرأ أيضاً

Quantum coherent transport of Dirac fermions in a mesoscopic nanowire of the 3D topological insulator Bi2Se3 is studied in the weak-disorder limit. At very low temperatures, many harmonics are evidenced in the Fourier transform of Aharonov-Bohm oscil lations, revealing the long phase-coherence length of surface states. Remarkably, from their exponential temperature dependence, we infer an unusual 1/T power law for the phase coherence length. This decoherence is typical for quasi-ballistic fermions weakly coupled to the dynamics of their environment.
We study the quantum Hall effect of Dirac fermions on the surface of a Wilson-Dirac type topological insulator thin film in the strong topological insulating phase. Although a magnetic field breaks time reversal symmetry of the bulk, the surface stat es can survive even in a strong field regime. We examine how the Landau levels of the surface states are affected by symmetry breaking perturbations.
Far infrared magneto-transmission spectroscopy has been used to probe relativistic fermions in highly oriented pyrolytic and natural graphite. Nearly identical transmission spectra of those two materials are obtained, giving the signature of Dirac fe rmions via absorption lines with an energy that scales as sqrt{B}. The Fermi velocity is evaluated to be c*=1.02x10^6 m/s and the pseudogap at the H point is estimated to be below 10 meV.
Ballistic electrons in solids can have mean free paths far larger than the smallest features patterned by lithography. This has allowed development and study of solid-state electron-optical devices such as beam splitters and quantum point contacts, w hich have informed our understanding of electron flow and interactions. Recently, high-mobility graphene has emerged as an ideal two-dimensional semimetal that hosts unique chiral electron-optical effects due to its honeycomb crystalline lattice. However, this chiral transport prevents simple use of electrostatic gates to define electron-optical devices in graphene. Here, we present a method of creating highly-collimated electron beams in graphene based on collinear pairs of slits, with absorptive sidewalls between the slits. By this method, we achieve beams with angular width 18 degrees or narrower, and transmission matching semiclassical predictions.
We study the dynamics of Dirac and Weyl electrons in disordered point-node semimetals. The ballistic feature of the transport is demonstrated by simulating the wave-packet dynamics on lattice models. We show that the ballistic transport survives unde r a considerable strength of disorder up to the semimetal-metal transition point, which indicates the robustness of point-node semimetals against disorder. We also visualize the robustness of the nodal points and linear dispersion under broken translational symmetry. The speed of the wave packets slows down with increasing disorder strength, and vanishes toward the critical strength of disorder, hence becoming the order parameter. The obtained critical behavior of the speed of the wave packets is consistent with that predicted by the scaling conjecture.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا