ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of TeV Gamma Rays from the Fermi Bright Galactic Sources with the Tibet Air Shower Array

130   0   0.0 ( 0 )
 نشر من قبل Kazumasa Kawata
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the Tibet-III air shower array, we search for TeV gamma-rays from 27 potential Galactic sources in the early list of bright sources obtained by the Fermi Large Area Telescope at energies above 100 MeV. Among them, we observe 7 sources instead of the expected 0.61 sources at a significance of 2 sigma or more excess. The chance probability from Poisson statistics would be estimated to be 3.8 x 10^-6. If the excess distribution observed by the Tibet-III array has a density gradient toward the Galactic plane, the expected number of sources may be enhanced in chance association. Then, the chance probability rises slightly, to 1.2 x 10^-5, based on a simple Monte Carlo simulation. These low chance probabilities clearly show that the Fermi bright Galactic sources have statistically significant correlations with TeV gamma-ray excesses. We also find that all 7 sources are associated with pulsars, and 6 of them are coincident with sources detected by the Milagro experiment at a significance of 3 sigma or more at the representative energy of 35 TeV. The significance maps observed by the Tibet-III air shower array around the Fermi sources, which are coincident with the Milagro >=3sigma sources, are consistent with the Milagro observations. This is the first result of the northern sky survey of the Fermi bright Galactic sources in the TeV region.



قيم البحث

اقرأ أيضاً

We report the analysis of the $10-1000$ TeV large-scale sidereal anisotropy of Galactic cosmic rays (GCRs) with the data collected by the Tibet Air Shower Array from October, 1995 to February, 2010. In this analysis, we improve the energy estimate an d extend the declination range down to $-30^{circ}$. We find that the anisotropy maps above 100 TeV are distinct from that at multi-TeV band. The so-called tail-in and loss-cone features identified at low energies get less significant and a new component appears at $sim100$ TeV. The spatial distribution of the GCR intensity with an excess (7.2$sigma$ pre-trial, 5.2$sigma$ post-trial) and a deficit ($-5.8sigma$ pre-trial) are observed in the 300 TeV anisotropy map, in a good agreement with IceCubes results at 400 TeV. Combining the Tibet results in the northern sky with IceCubes results in the southern sky, we establish a full-sky picture of the anisotropy in hundreds of TeV band. We further find that the amplitude of the first order anisotropy increases sharply above $sim100$ TeV, indicating a new component of the anisotropy. All these results may shed new light on understanding the origin and propagation of GCRs.
119 - M. Amenomori , X. J. Bi , D. Chen 2007
The Tibet air shower array, which has an effective area of 37,000 square meters and is located at 4300 m in altitude, has been observing air showers induced by cosmic rays with energies above a few TeV. We have a plan to add a large muon detector arr ay to it for the purpose of increasing its sensitivity to cosmic gamma rays in the 100 TeV energy region by discriminating them from cosmic-ray hadrons. We have deduced the attainable sensitivity of the muon detector array using our Monte Carlo simulation. We report here on the detailed procedure of our Monte Carlo simulation.
The flux upper limits of the diffuse gamma rays, from the inner and outer Galactic planes, are revised by factors of 4.0$sim$3.7 for mode energies 3$sim$10 TeV, respectively, by using the simulation results of the effective area ratios for gamma-ray induced showers and cosmic-ray induced ones in the Tibet air shower array. In our previous work, (Amenomori et al., ApJ, 580, 887, 2002) the flux upper limits were deduced only from the flux ratio of air showers generated by gamma rays versus cosmic rays. The details of the simulation are given in the paper (Amenomori et al., Advances in Space Research, 37, 1932, 2006). The present result using the same data as in ApJ suggests that the spectral index of source electrons is steeper than 2.2 and 2.1 for the inner and outer Galactic planes, respectively.
120 - M. Amenomori , X. J. Bi , D. Chen 2007
The Tibet air shower array, which has an effective area of 37,000 square meters and is located at 4300 m in altitude, has been observing air showers induced by cosmic rays with energies above a few TeV. We are planning to add a large muon detector ar ray to it for the purpose of increasing its sensitivity to cosmic gamma rays in the 100 TeV (10 - 1000 TeV) energy region by discriminating them from cosmic-ray hadrons. We report on the possibility of detection of gamma rays in the 100 TeV energy region in our field of view, based on the improved sensitivity of our air shower array deduced from the full Monte Carlo simulation.
140 - Y. Wang , X. J. Bi , S. W. Cui 2008
Using the data taken from Tibet II High Density (HD) Array (1997 February-1999 September) and Tibet-III array (1999 November-2005 November), our previous northern sky survey for TeV $gamma-$ray point sources has now been updated by a factor of 2.8 im proved statistics. From $0.0^{circ}$ to $60.0^{circ}$ in declination (Dec) range, no new TeV $gamma-$ray point sources with sufficiently high significance were identified while the well-known Crab Nebula and Mrk421 remain to be the brightest TeV $gamma-$ray sources within the field of view of the Tibet air shower array. Based on the currently available data and at the 90% confidence level (C.L.), the flux upper limits for different power law index assumption are re-derived, which are approximately improved by 1.7 times as compared with our previous reported limits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا