ﻻ يوجد ملخص باللغة العربية
Aims: Caustic-crossing binary-lens microlensing events are important anomalous events because they are capable of detecting an extrasolar planet companion orbiting the lens star. Fast and robust modelling methods are thus of prime interest in helping to decide whether a planet is detected by an event. Cassan (2008) introduced a new set of parameters to model binary-lens events, which are closely related to properties of the light curve. In this work, we explain how Bayesian priors can be added to this framework, and investigate on interesting options. Methods: We develop a mathematical formulation that allows us to compute analytically the priors on the new parameters, given some previous knowledge about other physical quantities. We explicitly compute the priors for a number of interesting cases, and show how this can be implemented in a fully Bayesian, Markov chain Monte Carlo algorithm. Results: Using Bayesian priors can accelerate microlens fitting codes by reducing the time spent considering physically implausible models, and helps us to discriminate between alternative models based on the physical plausibility of their parameters.
We outline a method for fitting binary-lens caustic-crossing microlensing events based on the alternative model parameterisation proposed and detailed in Cassan (2008). As an illustration of our methodology, we present an analysis of OGLE-2007-BLG-47
We search for microlensing planets with signals exhibiting no caustic-crossing features, considering the possibility that such signals may be missed due to their weak and featureless nature. For this purpose, we reexamine the lensing events found by
Despite astrophysical importance of binary star systems, detections are limited to those located in small ranges of separations, distances, and masses and thus it is necessary to use a variety of observational techniques for a complete view of stella
First, we review the current status of the detection of strong `external variability in the CLASS gravitational B1600+434, focusing on the 1998 VLA 8.5-GHz and 1998/9 WSRT multi-frequency observations. We show that this data can best be explained in
High amplification events (HAEs) are common phenomena in extragalactic gravitational lens systems (GLSs), where the multiple images of a distant quasar are observed through a foreground galaxy. There is a considerable brightness magnification in one