ﻻ يوجد ملخص باللغة العربية
Interface free energy is the contribution to the free energy of a system due to the presence of an interface separating two coexisting phases at equilibrium. It is also called surface tension. The content of the paper is 1) the definition of the interface free energy from first principles of statistical mechanics; 2) a detailed exposition of its basic properties. We consider lattice models with short range interactions, like the Ising model. A nice feature of lattice models is that the interface free energy is anisotropic so that some results are pertinent to the case of a crystal in equilibrium with its vapor. The results of section 2 hold in full generality.
Motivated by recent observations of phase-segregated binary Bose-Einstein condensates, we propose a method to calculate the excess energy due to the interface tension of a trapped configuration. By this method one should be able to numerically reprod
In this article we introduce the {it cylindrical construction} for graphs and investigate its basic properties. We state a main result claiming a weak tensor-like duality for this construction. Details of our motivations and applications of the construction will appear elsewhere.
We propose a general method (based on the Wang-Landau algorithm) to compute numerically free energies that are obtained from the logarithm of the ratio of suitable partition functions. As an application, we determine with high accuracy the order-orde
We study numerically the roughening properties of an interface in a two-dimensional Ising model with either random bonds or random fields, which are representative of universality classes where disorder acts only on the interface or also away from it
It is shown that the interface model introduced in Phys. Rev. Lett. 86, 2369 (2001) violates fundamental symmetry requirements for vanishing gravitational acceleration $g$, so that its results cannot be applied to critical properties of interfaces for $gto 0$.