ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning of Atomic Physics and Quantum Mechanics : Which should Begin First

44   0   0.0 ( 0 )
 نشر من قبل Z.K.-H. Chu
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

What are the differences and similarities between atomic-physics studies at different peoples (Han, Kazak and Uygur perples in the same university) across Xinjiang (a far-west district in PR China which is a border for previous USSR and Kazak)? In this short report we focus on issues relating to the learning style of different-people students to pass the atomic physics course in physics department even the quantum mechanics course has not been taken before.

قيم البحث

اقرأ أيضاً

84 - Roumen Tsekov 2020
It is demonstrated how quantum mechanics is generated by stochastic momentum kicks from the force carriers, transmitting the fundamental interactions between the point particles. The picture is consistent with quantum field theory and points out that the force carriers are the only quantum particles. Since the latter are waves in the coordinate space, they are responsible for the wavy character of quantum mechanics.
108 - C. Baumgarten 2018
When compared to quantum mechanics, classical mechanics is often depicted in a specific metaphysical flavour: spatio-temporal realism or a Newtonian background is presented as an intrinsic fundamental classical presumption. However, the Hamiltonian f ormulation of classical analytical mechanics is based on abstract generalized coordinates and momenta: It is a mathematical rather than a philosophical framework. If the metaphysical assumptions ascribed to classical mechanics are dropped, then there exists a presentation in which little of the purported difference between quantum and classical mechanics remains. This presentation allows to derive the mathematics of relativistic quantum mechanics on the basis of a purely classical Hamiltonian phase space picture. It is shown that a spatio-temporal description is not a condition for but a consequence of objectivity. It requires no postulates. This is achieved by evading spatial notions and assuming nothing but time translation invariance.
In this article, we discard the bra-ket notation and its correlative definitions, given by Paul Dirac. The quantum states are only described by the wave functions. The fundamental concepts and definitions in quantum mechanics is simplified. The opera tor, wave functions and square matrix are represented in the same expression which directly corresponds to the system of equations without additional introduction of the matrix representation of operator. It can make us to convert the operator relations into the matrix relations. According to the relations between the matrices, the matrix elements will be determined. Furthermore, the first order differential equations will be given to find the solution of equations. As a result, we unified the descriptions of the matrix mechanics and the wave mechanics.
135 - Yongqin Wang , Lifeng Kang 2011
In this article, we discard the bra-ket notation and its correlative definitions, given by Paul Dirac. The quantum states are only described by the wave functions. The fundamental concepts and definitions in quantum mechanics is simplified. The opera tor, wave functions and square matrix are represented in the same expression which directly corresponds to the system of equations without additional introduction of the matrix representation of operator. It can make us to convert the operator relations into the matrix relations. According to the relations between the matrices, the matrix elements will be determined. Furthermore, the first order differential equations will be given to find the solution of equations. As a result, we unified the descriptions of the matrix mechanics and the wave mechanics.
The procedure commonly used in textbooks for determining the eigenvalues and eigenstates for a particle in an attractive Coulomb potential is not symmetric in the way the boundary conditions at $r=0$ and $r rightarrow infty$ are considered. We highli ght this fact by solving a model for the Coulomb potential with a cutoff (representing the finite extent of the nucleus); in the limit that the cutoff is reduced to zero we recover the standard result, albeit in a non-standard way. This example is used to emphasize that a more consistent approach to solving the Coulomb problem in quantum mechanics requires an examination of the non-standard solution. The end result is, of course, the same.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا