ترغب بنشر مسار تعليمي؟ اضغط هنا

The interface between the stellar wind and interstellar medium around R Cassiopeiae revealed by far-infrared imaging

104   0   0.0 ( 0 )
 نشر من قبل Toshiya Ueta
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The circumstellar dust shells of intermediate initial-mass (about 1 to 8 solar masses) evolved stars are generated by copious mass loss during the asymptotic giant branch phase. The density structure of their circumstellar shell is the direct evidence of mass loss processes, from which we can investigate the nature of mass loss. We used the AKARI Infrared Astronomy Satellite and the Spitzer Space Telescope to obtain the surface brightness maps of an evolved star R Cas at far-infrared wavelengths, since the temperature of dust decreases as the distance from the star increases and one needs to probe dust at lower temperatures, i.e., at longer wavelengths. The observed shell structure and the stars known proper motion suggest that the structure represents the interface regions between the dusty wind and the interstellar medium. The deconvolved structures are fitted with the analytic bow shock structure to determine the inclination angle of the bow shock cone. Our data show that (1) the bow shock cone of 1 - 5 x 10^-5 solar masses (dust mass) is inclined at 68 degrees with respect to the plane of the sky, and (2) the dust temperature in the bow shock cone is raised to more than 20 K by collisional shock interaction in addition to the ambient interstellar radiation field. By comparison between the apex vector of the bow shock and space motion vector of the star we infer that there is a flow of interstellar medium local to R Cas whose flow velocity is at least 55.6 km/s, consistent with an environment conducive to dust heating by shock interactions.



قيم البحث

اقرأ أيضاً

The radiative and mechanical interaction of stars with their environment drives the evolution of the ISM and of galaxies as a whole. The far-IR emission (lambda ~30 to 350 microns) from atoms and molecules dominates the cooling of the warm gas in the neutral ISM, the material that ultimately forms stars. Far-IR lines are thus the most sensitive probes of stellar feedback processes, and allow us to quantify the deposition and cycling of energy in the ISM. While ALMA (in the (sub)mm) and JWST (in the IR) provide astonishing sub-arcsecond resolution images of point sources and their immediate environment, they cannot access the main interstellar gas coolants, nor are they designed to image entire star-forming regions (SFRs). Herschel far-IR photometric images of the interstellar dust thermal emission revealed the ubiquitous large-scale filamentary structure of SFRs, their mass content, and the location of thousands of prestellar cores and protostars. These images, however, provide a static view of the ISM: not only they dont constrain the cloud dynamics, moreover they cannot reveal the chemical composition and energy transfer within the cloud, thus giving little insight into the regulation process of star formation by stellar feedback. In this white paper we emphasize the need of a space telescope with wide-field spectral-imaging capabilities in the critical far-IR domain.
We have observed the symbiotic stellar system R Aqr, aiming to describe the gravitational interaction between the white dwarf (WD) and the wind from the Mira star, the key phenomenon driving the symbiotic activity and the formation of nebulae in such systems. We present high-resolution ALMA maps of the 12CO and 13CO J=3-2 lines, the 0.9 mm continuum distribution, and some high-excitation molecular lines in R Aqr. The maps, which have resolutions ranging between 40 milliarcsecond (mas) and less than 20 mas, probe the circumstellar regions at suborbital scales as the distance between the stars is ~ 40 mas. Our observations show the gravitational effects of the secondary on the stellar wind. The AGB star was identified in our maps from the continuum and molecular line data, and we estimated the probable position of the secondary from a new estimation of the orbital parameters. The (preliminary) comparison of our maps with theoretical predictions is surprisingly satisfactory and the main expected gravitational effects are directly mapped for the first time. We find a strong focusing in the equatorial plane of the resulting wind, which shows two plumes in opposite directions that have different velocities and very probably correspond to the expected double spiral due to the interaction. Our continuum maps show the very inner regions of the nascent bipolar jets, at scales of some AU. Continuum maps obtained with the highest resolution show the presence of a clump that very probably corresponds to the emission of the ionized surroundings of the WD and of a bridge of material joining both stars, which is likely material flowing from the AGB primary to the accretion disk around the WD secondary.
We investigate the structure, dynamics, and chemistry of the molecule-rich nebula around the stellar symbiotic system R Aqr, which is significantly affected by the presence of a white dwarf (WD) companion. We study the effects of the strong dynamical interaction between the AGB wind and the WD and of photodissociation by the WD UV radiation on the circumstellar shells. We obtained high-quality ALMA maps of the 12CO J=2-1, J=3-2, and J=6-5 lines and of 13CO J=3-2. The maps were analyzed by means of a heuristic 3D model that is able to reproduce the observations. In order to interpret this description of the molecule-rich nebula, we performed sophisticated calculations of hydrodynamical interaction and photoinduced chemistry. We find that the CO-emitting gas is distributed within a relatively small region <~ 1.5. Its structure consists of a central dense component plus strongly disrupted outer regions, which seem to be parts of spiral arms that are highly focused on the orbital plane. The structure and dynamics of these spiral arms are compatible with our hydrodynamical calculations. We argue that the observed nebula is the result of the dynamical interaction between the wind and the gravitational attraction of the WD. We also find that UV emission from the hot companion efficiently photodissociates molecules except in the densest and best-shielded regions, that is, in the close surroundings of the AGB star and some shreds of the spiral arms from which the detected lines come. We can offer a faithful description of the distribution of nebular gas in this prototypical source, which will be a useful template for studying material around other tight binary systems.
The Stephans Quintet (SQ, HCG92) was observed with the Far-Infrared Surveyor (FIS) aboard AKARI in four far-infrared (IR) bands at 65, 90, 140, and 160 um. The AKARI four-band images of the SQ show far-IR emission in the intergalactic medium (IGM) of the SQ. In particular, the 160 um band image shows single peak emission in addition to the structure extending in the North-South direction along the shock ridge as seen in the 140 um band, H2 emission and X-ray emission. Whereas most of the far-IR emission in the shocked region comes from the cold dust component, shock-powered [CII]158um emission can significantly contribute to the emission in the 160 um band that shows a single peak at the shocked region. In the shocked region, the observed gas-to-dust mass ratio is in agreement with the Galactic one. The color temperature of the cold dust component (~20 K) is lower than that in surrounding galaxies (~30 K). We discuss a possible origin of the intergalactic dust emission.
Complex organic molecules (COMs), which are the seeds of prebiotic material and precursors of amino acids and sugars, form in the icy mantles of circumstellar dust grains but cannot be detected remotely unless they are heated and released to the gas phase. Around solar-mass stars, water and COMs only sublimate in the inner few au of the disk, making them extremely difficult to spatially resolve and study. Sudden increases in the luminosity of the central star will quickly expand the sublimation front (so-called snow line) to larger radii, as seen previously in the FU Ori outburst of the young star V883 Ori. In this paper, we take advantage of the rapid increase in disk temperature of V883 Ori to detect and analyze five different COMs, methanol, acetone, acetonitrile, acetaldehyde, and methyl formate, in spatially-resolved submillimeter observations. The COMs abundances in V883 Ori is in reasonable agreement with cometary values. This result suggests that outbursting young stars can provide a special opportunity to study the ice composition of material directly related to planet formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا