ﻻ يوجد ملخص باللغة العربية
Recent works have shown that the domain walls of room-temperature multiferroic BiFeO3 (BFO) thin films can display distinct and promising functionalities. It is thus important to understand the mechanisms underlying domain formation in these films. High-resolution x-ray diffraction and piezo-force microscopy, combined with first-principles simulations, have allowed us to characterize both the atomic and domain structure of BFO films grown under compressive strain on (001)-SrTiO3, as a function of thickness. We derive a twining model that describes the experimental observations and explains why the 71o domain walls are the ones commonly observed in these films. This understanding provides us with a new degree of freedom to control the structure and, thus, the properties of BiFeO3 thin films.
We have combined neutron scattering and piezoresponse force microscopy to study the relation between the exchange bias observed in CoFeB/BiFeO3 heterostructures and the multiferroic domain structure of the BiFeO3 films. We show that the exchange fiel
The structural and ferroelectric domain variants of highly-strained BiFeO3 films grown on vicinal LaSrAlO4 substrates were studied by piezoelectric force microscopy and high-resolution X-ray reciprocal space mapping. Through symmetry breaking of the
A current challenge in the field of magnetoelectric multiferroics is to identify systems that allow a controlled tuning of states displaying distinct magnetoelectric responses. Here we show that the multiferroic ground state of the archetypal multife
We report the structural and physical properties of epitaxial Bi2FeCrO6 thin films on epitaxial SrRuO3 grown on (100)-oriented SrTiO3 substrates by pulsed laser ablation. The 300 nm thick films exhibit both ferroelectricity and magnetism at room temp
We investigated the crystal and electronic structures of ferroelectric Bi4Ti3O12 (BiT) single crystalline thin films site-specifically substituted with LaCoO3 (LCO). The epitaxial films were grown by pulsed laser epitaxy on NdGaO3 and SrTiO3 substrat