ترغب بنشر مسار تعليمي؟ اضغط هنا

Excited-Nucleon Spectroscopy with 2+1 Fermion Flavors

202   0   0.0 ( 0 )
 نشر من قبل Huey-Wen Lin
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present progress made by the Hadron Spectrum Collaboration (HSC) in determining the tower of excited nucleon states using 2+1-flavor anisotropic clover lattices. The HSC has been investigating interpolating operators projected into irreducible representations of the cubic group in order to better calculate two-point correlators for nucleon spectroscopy; results are published for quenched and 2-flavor anisotropic Wilson lattices. In this work, we present the latest results using a new technique, distillation, which allows us to reach higher statistics than before. Future directions will be outlined at the end.



قيم البحث

اقرأ أيضاً

We present new high-statistics results for nucleon form factors at pion masses of approximately 290, 350, 500, and 600 MeV using a mixed action of domain wall valence quarks on an improved staggered sea. We perform chiral fits to both vector and axia l form factors and compare our results to experiment.
We analyze Nf=2 nucleon mass data with respect to their dependence on the pion mass down to mpi = 157 MeV and compare it with predictions from covariant baryon chiral perturbation theory (BChPT). A novel feature of our approach is that we fit the nuc leon mass data simultaneously with the directly obtained pion-nucleon sigma-term. Our lattice data below mpi = 435 MeV is well described by O(p^4) BChPT and we find sigma=37(8)(6) MeV for the sigma-term at the physical point. Using the nucleon mass to set the scale we obtain a Sommer parameter of r_0=0.501(10)(11) fm.
We report on a continuum extrapolated result [arXiv:1309.5258] for the equation of state (EoS) of QCD with $N_f=2+1$ dynamical quark flavors. In this study, all systematics are controlled, quark masses are set to their physical values, and the contin uum limit is taken using at least three lattice spacings corresponding to temporal extents up to $N_t=16$. A Symanzik improved gauge and stout-link improved staggered fermion action is used. Our results are available online [ancillary file to arXiv:1309.5258].
The energies of the excited states of the Nucleon, $Delta$ and $Omega$ are computed in lattice QCD, using two light quarks and one strange quark on anisotropic lattices. The calculation is performed at three values of the light quark mass, correspond ing to pion masses $m_{pi}$ = 392(4), 438(3) and 521(3) MeV. We employ the variational method with a large basis of interpolating operators enabling six energies in each irreducible representation of the lattice to be distinguished clearly. We compare our calculation with the low-lying experimental spectrum, with which we find reasonable agreement in the pattern of states. The need to include operators that couple to the expected multi-hadron states in the spectrum is clearly identified.
We present results for the QCD equation of state, quark densities and susceptibilities at nonzero chemical potential, using 2+1 flavor asqtad ensembles with $N_t=4$. The ensembles lie on a trajectory of constant physics for which $m_{ud}approx0.1m_s$ . The calculation is performed using the Taylor expansion method with terms up to sixth order in $mu/T$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا