ترغب بنشر مسار تعليمي؟ اضغط هنا

Polaronic distortion and vacancy-induced magnetism in MgO

110   0   0.0 ( 0 )
 نشر من قبل Andrea Droghetti
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electronic structure of the neutral and singly charged Mg vacancy in MgO is investigated using density functional theory. For both defects, semilocal exchange correlation functionals such as the local spin density approximation incorrectly predict a delocalized degenerate ground state. In contrast functionals that take strong correlation effects into account predict a localized solution, in agreement with spin resonance experiments. Our results, obtained with the HSE hybrid, atomic self-interaction corrected and LDA+U functionals, provide a number of constraints to the possibility of ferromagnetism in hole doped MgO.

قيم البحث

اقرأ أيضاً

105 - A. Ostlin , L. Chioncel , E. Burzo 2016
The effect of lithium vacancies in the hexagonal structure of $alpha-$Li$_3$N, is studied within the framework of density functional theory. Vacancies ($square$) substituting for lithium in $alpha-$Li$_2$(Li$_{1-x}square_x$)N are treated within the c oherent potential approximation as alloy components. According to our results long range N($p$)-ferromagnetism ($sim 1$ $mu_B$) sets in for vacancy substitution within the [Li$_2$N] layers ($x ge 0.7$) with no significant change in unit cell dimensions. By total energies differences we established that in-plane exchange couplings are dominant. Vacancies substituting inter-plane Li, leads to a considerable structural collapse ($c/a approx 0.7$) and no magnetic moment formation.
We address the electronic structure and magnetic properties of vacancies and voids both in graphene and graphene ribbons. Using a mean field Hubbard model, we study the appearance of magnetic textures associated to removing a single atom (vacancy) an d multiple adjacent atoms (voids) as well as the magnetic interactions between them. A simple set of rules, based upon Lieb theorem, link the atomic structure and the spatial arrangement of the defects to the emerging magnetic order. The total spin $S$ of a given defect depends on its sublattice imbalance, but some defects with S=0 can still have local magnetic moments. The sublattice imbalance also determines whether the defects interact ferromagnetically or antiferromagnetically with one another and the range of these magnetic interactions is studied in some simple cases. We find that in semiconducting armchair ribbons and two-dimensional graphene without global sublattice imbalance there is maximum defect density above which local magnetization disappears. Interestingly, the electronic properties of semiconducting graphene ribbons with uncoupled local moments are very similar to those of diluted magnetic semiconductors, presenting giant Zeeman splitting.
We report crystal structure, electronic structure, and magnetism of manganese tetraboride, MnB4, synthesized under high-pressure high-temperature conditions. In contrast to superconducting FeB4 and metallic CrB4, which are both orthorhombic, MnB4 fea tures a monoclinic crystal structure. Its lower symmetry originates from a Peierls distortion of the Mn chains. This distortion nearly opens the gap at the Fermi level, but despite the strong dimerization and the proximity of MnB4 to the insulating state, we find indications for a sizable paramagnetic effective moment of about 1.7 muB/f.u., ferromagnetic spin correlations and, even more surprisingly, a prominent electronic contribution to the specific heat. However, no magnetic order has been observed in standard thermodynamic measurements down to 2 K. Altogether, this renders MnB4 a structurally simple but microscopically enigmatic material; we argue that its properties may be influenced by electronic correlations.
This article reviews static and dynamic interfacial effects in magnetism, focusing on interfacially-driven magnetic effects and phenomena associated with spin-orbit coupling and intrinsic symmetry breaking at interfaces. It provides a historical back ground and literature survey, but focuses on recent progress, identifying the most exciting new scientific results and pointing to promising future research directions. It starts with an introduction and overview of how basic magnetic properties are affected by interfaces, then turns to a discussion of charge and spin transport through and near interfaces and how these can be used to control the properties of the magnetic layer. Important concepts include spin accumulation, spin currents, spin transfer torque, and spin pumping. An overview is provided to the current state of knowledge and existing review literature on interfacial effects such as exchange bias, exchange spring magnets, spin Hall effect, oxide heterostructures, and topological insulators. The article highlights recent discoveries of interface-induced magnetism and non-collinear spin textures, non-linear dynamics including spin torque transfer and magnetization reversal induced by interfaces, and interfacial effects in ultrafast magnetization processes.
We examine the adsorption of a single Ni atom on a monolayer of MgO on a Ag substrate using DFT and DFT+U computational approaches. We find that the electronic and magnetic properties vary considerably across the three binding sites of the surface. T wo of the binding sites are competitive in energy, and the preferred site depends on the strength of the on-site Coulomb interaction U. These results can be understood in terms of the competition between bonding and magnetism for surface adsorbed transition metal atoms. Comparisons are made with a recent experimental and theoretical study of Co on MgO/Ag, and implications for scanning tunneling microscopy experiments on the Ni system are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا