ﻻ يوجد ملخص باللغة العربية
We present an elegant method of determining the eigensolutions of the induction and the dynamo equation in a fluid embedded in a vacuum. The magnetic field is expanded in a complete set of functions. The new method is based on the biorthogonality of the adjoint electric current and the vector potential with an inner product defined by a volume integral over the fluid domain. The advantage of this method is that the velocity and the dynamo coefficients of the induction and the dynamo equation do not have to be differentiated and thus even numerically determined tabulated values of the coefficients produce reasonable results. We provide test calculations and compare with published results obtained by the classical treatment based on the biorthogonality of the magnetic field and its adjoint. We especially consider dynamos with mean-field coefficients determined from direct numerical simulations of the geodynamo and compare with initial value calculations and the full MHD simulations.
Starting from the adiabatic time-dependent Hartree-Fock approximation (ATDHF), we propose an efficient method to calculate the Thouless-Valatin moments of inertia for the nuclear system. The method is based on the rapid convergence of the expansion o
We propose an efficient and flexible method for solving Abel integral equation of the first kind, frequently appearing in many fields of astrophysics, physics, chemistry, and applied sciences. This equation represents an ill-posed problem, thus solvi
This article studies a direct numerical approach for fractional advection-diffusion equations (ADEs). Using a set of cubic trigonometric B-splines as test functions, a differential quadrature (DQ) method is firstly proposed for the 1D and 2D time-fra
In a recent MNRAS article, Raposo-Pulido and Pelaez (RPP) designed a scheme for obtaining very close seeds for solving the elliptic Kepler Equation with the classical and the modified Newton-Rapshon methods. This implied an important reduction in the
The spectral renormalization method was introduced in 2005 as an effective way to compute ground states of nonlinear Schrodinger and Gross-Pitaevskii type equations. In this paper, we introduce an orthogonal spectral renormalization (OSR) method to c